Abbonarsi

Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity - 05/08/11

Doi : 10.1016/j.pmr.2009.07.003 
Wei Wang, MD, PhD a, b, c, Jennifer L. Collinger, PhD a, d, Monica A. Perez, PhD, PT a, Elizabeth C. Tyler-Kabara, MD, PhD b, e, Leonardo G. Cohen, MD f, Niels Birbaumer, PhD g, Steven W. Brose, DO a, Andrew B. Schwartz, PhD b, h, Michael L. Boninger, MD a, b, d, Douglas J. Weber, PhD a, b, c,
a Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA 
b Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA 
c Quality of Life Technology (QoLT) Engineering Research Center, 417 South Craig Street, Room 303, Pittsburgh, PA 15213, USA 
d Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, 7180 Highland Drive, Building 4, 151R-1, Pittsburgh, PA 15206, USA 
e Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA 
f Human Cortical Physiology Section and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, 10 Center Drive, MSC 1430, Bethesda, MD 20892, USA 
g Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen, Gartenstr 29, Room 210, D-72074, Tuebingen, Germany 
h Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, E1440 BSTWR, Pittsburgh, PA 15213, USA 

Corresponding author. Department of Physical Medicine and Rehabilitation, Department of Bioengineering, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213.

Riassunto

This article reviews neural interface technology and its relationship with neuroplasticity. Two types of neural interface technology are reviewed, highlighting specific technologies that the authors directly work with: (1) neural interface technology for neural recording, such as the micro-ECoG BCI system for hand prosthesis control, and the comprehensive rehabilitation paradigm combining MEG-BCI, action observation, and motor imagery training; (2) neural interface technology for functional neural stimulation, such as somatosensory neural stimulation for restoring somatosensation, and non-invasive cortical stimulation using rTMS and tDCS for modulating cortical excitability and stroke rehabilitation. The close interaction between neural interface devices and neuroplasticity leads to increased efficacy of neural interface devices and improved functional recovery of the nervous system. This symbiotic relationship between neural interface technology and the nervous system is expected to maximize functional gain for individuals with various sensory, motor, and cognitive impairments, eventually leading to better quality of life.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Brain-computer interface, Neural interface, Neuroplasticity, Stimulation, Recording, Rehabilitation


Mappa


 This work was supported by the National Science Foundation under Cooperative Agreement EEC-0540865, Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research and Material Command Agreement W81XWH-07-1-0716, a special grant from the Office of the Senior Vice Chancellor for the Health Sciences at the University of Pittsburgh, National Institutes of Health (NIH) grants from the NIBIB (1R01EB007749) and NINDS (1R21NS056136), and grant number 5 UL1 RR024153 from the National Center for Research Resources (NCRR), a component of the NIH and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.


© 2010  Elsevier Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 21 - N° 1

P. 157-178 - Febbraio 2010 Ritorno al numero
Articolo precedente Articolo precedente
  • Wheelchair Basketball Quantification
  • Angel Gil-Agudo, Antonio Del Ama-Espinosa, Beatriz Crespo-Ruiz
| Articolo seguente Articolo seguente
  • Virtual Coach Technology for Supporting Self-Care
  • Dan Ding, Hsin-Yi Liu, Rosemarie Cooper, Rory A. Cooper, Asim Smailagic, Dan Siewiorek

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.