A UK-Wide Study Employing Natural Language Processing to Determine What Matters to People about Brain Health to Improve Drug Development: The Electronic Person-Specific Outcome Measure (ePSOM) Programme - 21/11/24

Doi : 10.14283/jpad.2021.30 
Stina Saunders 1, , G. Muniz-Terrera 1, S. Sheehan 2, C.W. Ritchie 1, 3, S. Luz 2
1 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK 
2 Usher Institute of Population Health Sciences and Informatics; Molecular, Genetic and Population Health Sciences, University of Edinburgh, Edinburgh, UK 
3 Brain Health Scotland, Scotland, UK 

a stina.saunders@ed.ac.uk stina.saunders@ed.ac.uk

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

It is important to use outcome measures for novel interventions in Alzheimer’s disease (AD) that capture the research participants’ views of effectiveness. The electronic Person-Specific Outcome Measure (ePSOM) development programme is underpinned by the need to identify and detect change in early disease manifestations and the possibilities of incorporating artificial intelligence in outcome measures.

Objectives

The aim of the ePSOM programme is to better understand what outcomes matter to patients in the AD population with a focus on those at the pre-dementia stages of disease. Ultimately, we aim to develop an app with robust psychometric properties to be used as a patient reported outcome measure in AD clinical trials.

Design

We designed and ran a nationwide study (Aug 2019 - Nov 2019, UK), collecting primarily free text responses in five pre-defined domains. We collected self-reported clinical details and sociodemographic data to analyse responses by key variables whilst keeping the survey short (around 15 minutes). We used clustering and Natural Language Processing techniques to identify themes which matter most to individuals when developing new treatments for AD.

Results

The study was completed by 5,808 respondents, yielding over 80,000 free text answers. The analysis resulted in 184 themes of importance. An analysis focusing on key demographics to explore how priorities differed by age, gender and education revealed that there are significant differences in what groups consider important about their brain health.

Discussion

The ePSOM data has generated evidence on what matters to people when developing new treatments for AD that target secondary prevention and therein maintenance of brain health. These results will form the basis for an electronic outcome measure to be used in AD clinical research and clinical practice.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Clinically meaningful change, electronic patient reported outcome measures, Alzheimer’s disease, outcome measures, brain health


Mappa


 How to cite this article: S. Saunders, G. Muniz-Terrera, S. Sheehan, et al. A UK-Wide Study Employing Natural Language Processing to Determine What Matters to People about Brain Health to Improve Drug Development: The Electronic Person-Specific Outcome Measure (ePSOM) Programme J Prev Alz Dis 2021; jpad.2021.30


© 2021  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 8 - N° 4

P. 448-456 - Aprile 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Early-Onset Subgroup of Type 2 Diabetes and Risk of Dementia, Alzheimer’s disease and Stroke: A Cohort Study
  • K. Wang, Hong Liu
| Articolo seguente Articolo seguente
  • A Fay-Herriot Model for Estimating Subjective Cognitive Decline among Military Veterans
  • Justin T. McDaniel, R.J. McDermott, T. Schneider

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.