Personalized Computational Causal Modeling of the Alzheimer Disease Biomarker Cascade - 21/11/24

Doi : 10.14283/jpad.2023.134 
Jeffrey R. Petrella 1, , J. Jiang 1, K. Sreeram 1, S. Dalziel 1, P.M. Doraiswamy 2, W. Hao 3

Alzheimer’s Disease Neuroimaging Initiative

1 Department of Radiology, Duke University School of Medicine, DUMC, Box 3808, 27710-3808, Durham, NC, USA 
2 Departments of Psychiatry and Medicine, Duke University School of Medicine; Duke Institute for Brain Sciences, DUMC, Box 3808, 27710-3808, Durham, NC, USA 
3 Department of Mathematics, Pennsylvania State University, McAllister Bldg 208, 16802, Carlisle, PA, USA 

a jeffrey.petrella@duke.edu jeffrey.petrella@duke.edu

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Mathematical models of complex diseases, such as Alzheimer’s disease, have the potential to play a significant role in personalized medicine. Specifically, models can be personalized by fitting parameters with individual data for the purpose of discovering primary underlying disease drivers, predicting natural history, and assessing the effects of theoretical interventions. Previous work in causal/mechanistic modeling of Alzheimer’s Disease progression has modeled the disease at the cellular level and on a short time scale, such as minutes to hours. No previous studies have addressed mechanistic modeling on a personalized level using clinically validated biomarkers in individual subjects.

Objectives

This study aimed to investigate the feasibility of personalizing a causal model of Alzheimer’s Disease progression using longitudinal biomarker data.

Design/Setting/Participants/Measurements

We chose the Alzheimer Disease Biomarker Cascade model, a widely-referenced hypothetical model of Alzheimer’s Disease based on the amyloid cascade hypothesis, which we had previously implemented mathematically as a mechanistic model. We used available longitudinal demographic and serial biomarker data in over 800 subjects across the cognitive spectrum from the Alzheimer’s Disease Neuroimaging Initiative. The data included participants that were cognitively normal, had mild cognitive impairment, or were diagnosed with dementia (probable Alzheimer’s Disease). The model consisted of a sparse system of differential equations involving four measurable biomarkers based on cerebrospinal fluid proteins, imaging, and cognitive testing data.

Results

Personalization of the Alzheimer Disease Biomarker Cascade model with individual serial biomarker data yielded fourteen personalized parameters in each subject reflecting physiologically meaningful characteristics. These included growth rates, latency values, and carrying capacities of the various biomarkers, most of which demonstrated significant differences across clinical diagnostic groups. The model fits to training data across the entire cohort had a root mean squared error (RMSE) of 0.09 (SD 0.081) on a variable scale between zero and one, and were robust, with over 90% of subjects showing an RMSE of < 0.2. Similarly, in a subset of subjects with data on all four biomarkers in at least one test set, performance was high on the test sets, with a mean RMSE of 0.15 (SD 0.117), with 80% of subjects demonstrating an RMSE < 0.2 in the estimation of future biomarker points. Cluster analysis of parameters revealed two distinct endophenotypic groups, with distinct biomarker profiles and disease trajectories.

Conclusion

Results support the feasibility of personalizing mechanistic models based on individual biomarker trajectories and suggest that this approach may be useful for reclassifying subjects on the Alzheimer’s clinical spectrum. This computational modeling approach is not limited to the Alzheimer Disease Biomarker Cascade hypothesis, and can be applied to any mechanistic hypothesis of disease progression in the Alzheimer’s field that can be monitored with biomarkers. Thus, it offers a computational platform to compare and validate various disease hypotheses, personalize individual biomarker trajectories and predict individual response to theoretical prevention and therapeutic intervention strategies.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Mathematical modeling, dementia, Alzheimer’s disease, disease


Mappa


 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: ADNI_Acknowledgement_List.pdf


© 2023  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 11 - N° 2

P. 435-444 - Marzo 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Nanolithium, a New Treatment Approach to Alzheimer’s Disease: A Review of Existing Evidence and Clinical Perspectives
  • Solene Guilliot, E.N. Wilson, J. Touchon, M.E. Soto
| Articolo seguente Articolo seguente
  • Fruit Intake and Alzheimer’s Disease: Results from Mendelian Randomization
  • Wan-Zhe Liao, X.-F. Zhu, Q. Xin, Y.-T. Mo, L.-L. Wang, X.-P. He, Xu-Guang Guo

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.