Preferences about Future Alzheimer’s Disease Treatments Elicited through an Online Survey Using the Threshold Technique - 21/11/24

Doi : 10.14283/jpad.2023.84 
Sonia Roldan Munoz 1, 8, , S.T. de Vries 1, 2, G. Lankester 3, F. Pignatti 4, B.C. van Munster 5, I. Radford 3, L. Guizzaro 4, 6, P.G.M. Mol 1, 2, H. Hillege 2, 7, D. Postmus 4, 7
1 University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands 
2 Dutch Medicines Evaluation Board, Utrecht, The Netherlands 
3 Alzheimer’s Research UK, Cambridge, UK 
4 European Medicines Agency, Amsterdam, The Netherlands 
5 University Medical Center Groningen, Department of Internal Medicine and Geriatrics, University of Groningen, Groningen, The Netherlands 
6 Statistica Medica, Università Della Campania Luigi Vanvitelli, Napoli, Italy 
7 University Medical Center Groningen, Department of Epidemiology, University of Groningen, Groningen, The Netherlands 
8 Department zip code AP50, mailbox 30.001, Building 50, entrance 45, 1st floor, Room 50.1.C.003, 9700 RB, Groningen, The Netherlands 

a s.roldan.munoz@umcg.nl s.roldan.munoz@umcg.nl

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Treatments aiming at slowing down the progression of Alzheimer’s disease (AD) may soon become available. However, information about the risks that people are willing to accept in order to delay the progression of the disease is limited.

Objective

To determine the trade-offs that individuals are willing to make between the benefits and risks of hypothetical treatments for AD, and the extent to which these trade-offs depend on individuals’ characteristics and beliefs about medicines.

Design

Online, cross-sectional survey study.

Setting

Population in the UK. Public link to the survey available at the websites of Alzheimer’s Research UK and Join Dementia Research.

Participants

Everyone self-reported ≥18 years old was eligible to participate. A total of 4384 people entered the survey and 3658 completed it.

Measurements

The maximum acceptable risks (MARs) of participants for moderate and severe adverse events in exchange for a 2-year delay in disease progression. The risks were expressed on ordinal scales, from <10% to ≥50%, above a pre-existing risk of 30% for moderate adverse events and 10% for severe adverse events. We obtained the population median MARs using log-normal survival models and quantified the effects of individuals’ characteristics and beliefs about medicines in terms of acceleration factors.

Results

For the moderate adverse events, 26% of the participants had a MAR ≥50%, followed by 25% of the participants with a MAR of 10 to <20%, giving an estimated median MAR of 25.4% (95% confidence interval [CI] 24.5 to 26.3). For the severe adverse events, 43% of the participants had a MAR <10%, followed by 25% of the participants with a MAR of 10 to <20%, resulting in an estimated median MAR of 12.1% (95%CI 11.6 to 12.5). Factors that were associated with the individuals’ MARs for one or both adverse events were age, gender, educational level, living alone, and beliefs about medicines. Whether or not individuals were living with memory problems or had experience as a caregiver had no effect on the MARs for any of the adverse events.

Conclusion

Trade-offs between benefits and risks of AD treatments are heterogeneous and influenced by individuals’ characteristics and beliefs about medicines. This heterogeneity should be acknowledged during the medicinal product decision-making in order to fulfil the needs of the various subpopulations.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Alzheimer’s disease, stated preferences, benefit-risk trade-offs, threshold technique, maximum acceptable risk


Mappa


 Disclaimer: The views expressed in this article are the personal views of the authors and may not be understood or quoted as being made on behalf of or reflecting the position of the Dutch Medicines Evaluation Board, the European Medicines Agency, or any of their committees.


© 2023  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 10 - N° 4

P. 756-764 - Novembre 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • High Intake of Dietary Cholesterol Decreases the Risk of All-Cause Dementia and AD Dementia: A Results from Framingham Offspring Cohort
  • Mingmin Wang, Yanqiu Wang, Y. Zhang, W. Zhang, Y. Wang, R. Fan, Yi Wen
| Articolo seguente Articolo seguente
  • Initial Experiences with Amyloid-Related Imaging Abnormalities in Patients Receiving Aducanumab Following Accelerated Approval
  • Matthew D. Howe, K.J. Britton, H.E. Joyce, G.J. Pappas, M.A. Faust, B.C. Dawson, M.C. Riddle, S.P. Salloway

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.