Feasibility of Using a Wearable Biosensor Device in Patients at Risk for Alzheimer’s Disease Dementia - 21/11/24

Doi : 10.14283/jpad.2019.39 
N. Saif 1, P. Yan 2, K. Niotis 1, O. Scheyer 3, A. Rahman 1, M. Berkowitz 1, R. Krikorian 4, H. Hristov 1, G. Sadek 1, S. Bellara 1, Richard S. Isaacson 1,
1 Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, 428 e 72nd Street, Suite 400, 10021, New York, NY, USA 
2 Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA 
3 School of Law, University of California Los Angeles, Los Angeles, USA 
4 Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA 

m rii9004@med.cornell.edu

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

Alzheimer’s disease (AD) is the most common and most costly chronic neurodegenerative disease globally. AD develops over an extended period prior to cognitive symptoms, leaving a “window of opportunity” for targeted risk-reduction interventions. Further, this pre-dementia phase includes early physiological changes in sleep and autonomic regulation, for which wearable biosensor devices may offer a convenient and cost-effective method to assess AD-risk.

Methods

Patients with a family history of AD and no or minimal cognitive complaints were recruited from the Alzheimer’s Prevention Clinic at Weill Cornell Medicine & New York-Presbyterian. Of the 40 consecutive patients screened, 34 (85%) agreed to wear a wearable biosensor device (WHOOP). One subject (2.5%) lost the device prior to data collection. Of the remaining subjects, 24 were classified as normal cognition and were asymptomatic, 6 were classified as subjective cognitive decline, and 3 were amyloid-positive (one with pre-clinical AD, one with pre-clinical Lewy-Body Dementia, and one with mild cognitive impairment due to AD). Sleep-cycle, autonomic (heart rate variability [HRV]) and activity measures were collected via WHOOP. Blood biomarkers and neuropsychological testing sensitive to cognitive changes in pre-clinical AD were obtained. Participants completed surveys assessing their sleep-patterns, exercise habits, and attitudes towards WHOOP. The goal of this prospective observational study was to determine the feasibility of using a wrist-worn biosensor device in patients at-risk for AD dementia. Unsupervised machine learning was performed to first separate participants into distinct phenotypic groups using the multivariate biometric data. Additional statistical analyses were conducted to examine correlations between individual biometric measures and cognitive performance.

Results

27 (81.8%) participants completed the follow-up surveys. Twenty-four participants (88.9%) were satisfied with WHOOP after six months, and twenty-three (85.2%) wanted to continue wearing WHOOP. K-means clustering separated participants into two groups. Group 1 was older, had lower HRV, and spent more time in slow-wave sleep (SWS) than Group 2. Group 1 performed better on two cognitive tests assessing executive function: Flanker Inhibitory Attention/Control (FIAC) (p=.031), and Dimensional Change Card Sort (DCCS) (p=.061). In Group 1, DCCS was correlated with SWS (ϱ=.68, p=0.024) and HRV (ϱ=.6, p=0.019). In Group 2, DCCS was correlated with HRV (ϱ=.55, p=0.018). There were no significant differences in blood biomarkers between the two groups.

Conclusions

Wearable biosensor devices may be a feasible tool to assess AD-related physiological changes. Longitudinal collection of sleep and HRV data may potentially be a noninvasive method for monitoring cognitive changes related to pre-clinical AD. Further study is warranted in larger populations.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Alzheimer’s disease, actinography, unsupervised machine learning, early detection, biosensor devices


Mappa


 Both authors contributed equally to this work


© 2019  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 7 - N° 2

P. 104-111 - Marzo 2020 Ritorno al numero
Articolo precedente Articolo precedente
  • Effects of Rice Wine Lees on Cognitive Function in Community-Dwelling Physically Active Older Adults: A Pilot Randomized Controlled Trial
  • Narumi Nagai, N. Shindo, A. Wada, H. Izu, T. Fujii, K. Matsubara, Y. Wada, N. Sakane
| Articolo seguente Articolo seguente
  • Effects of a Group-Based 8-Week Multicomponent Cognitive Training on Cognition, Mood and Activities of Daily Living among Healthy Older Adults: A One-Year Follow-Up of a Randomized Controlled Trial
  • Patsri Srisuwan, D. Nakawiro, S. Chansirikarnjana, O. Kuha, P. Chaikongthong, T. Suwannagoot

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.