Multiomics Blood-Based Biomarkers Predict Alzheimer’s Predementia with High Specificity in a Multicentric Cohort Study - 21/11/24

Doi : 10.14283/jpad.2024.34 
B. Souchet 1, A. Michaïl 1, M. Heuillet 2, A. Dupuy-Gayral 2, E. Haudebourg 2, C. Pech 2, A. Berthemy 2, F. Autelitano 2, B. Billoir 1, K. Domoto-Reilly 3, C. Fowler 4, 5, T. Grabowski 3, S. Jayadev 3, C.L. Masters 5, Jérôme Braudeau 1,
1 AgenT, 4 rue Pierre Fontaine, 91000, Evry-Courcouronnes, France 
2 EVOTEC, 195 Route d’Espagne, 31100, Toulouse, France 
3 Department of Neurology, University of Washington, 1410 NE Campus Pkwy, 98195, Seattle, WA, USA 
4 Department of Molecular Imaging & Therapy, Austin Health, Austin Hospital, 3084, Heidelberg, VIC, Australia 
5 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 3052, Parkville, VIC, Australia 

r jerome.braudeau@agent-biotech.com jerome.braudeau@agent-biotech.com

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Background

The primary criteria for diagnosing mild cognitive impairment (MCI) due to Alzheimer’s Disease (AD) or probable mild AD dementia rely partly on cognitive assessments and the presence of amyloid plaques. Although these criteria exhibit high sensitivity in predicting AD among cognitively impaired patients, their specificity remains limited. Notably, up to 25% of non-demented patients with amyloid plaques may be misdiagnosed with MCI due to AD, when in fact they suffer from a different brain disorder. The introduction of anti-amyloid antibodies complicates this scenario. Physicians must prioritize which amyloid-positive MCI patients receive these treatments, as not all are suitable candidates. Specifically those with non-AD amyloid pathologies are not primary targets for amyloid-modifying therapies. Consequently there is an escalating medical necessity for highly specific blood biomarkers that can accurately detect pre-dementia AD, thus optimizing amyloid antibody prescription.

Objectives

The objective of this study was to evaluate a predictive model based on peripheral biomarkers to identify MCI and mild dementia patients who will develop AD dementia symptoms in cognitively impaired population with high specificity.

Design

Peripheral biomarkers were identified in a gene transfer-based animal model of AD and then validated during a retrospective multi-center clinical study.

Setting

Participants from 7 retrospective cohorts (US, EU and Australia).

Participants

This study followed 345 cognitively impaired individuals over up to 13 years, including 193 with MCI and 152 with mild dementia, starting from their initial visits. The final diagnoses, established during their last assessments, classified 249 participants as AD patients and 96 as having non-AD brain disorders, based on the specific diagnostic criteria for each disorder subtype. Amyloid status, assessed at baseline, was available for 82.9% of the participants, with 61.9% testing positive for amyloid. Both amyloid-positive and negative individuals were represented in each clinical group. Some of the AD patients had co-morbidities such as metabolic disorders, chronic diseases, or cardiovascular pathologies.

Measurements

We developed targeted mass spectrometry assays for 81 blood-based biomarkers, encompassing 45 proteins and 36 metabolites previously identified in AAV-AD rats.

Methods

We analyzed blood samples from study participants for the 81 biomarkers. The B-HEALED test, a machine learning-based diagnostic tool, was developed to differentiate AD patients, including 123 with Prodromal AD and 126 with mild AD dementia, from 96 individuals with non-AD brain disorders. The model was trained using 70% of the data, selecting relevant biomarkers, calibrating the algorithm, and establishing cutoff values. The remaining 30% served as an external test dataset for blind validation of the predictive accuracy.

Results

Integrating a combination of 19 blood biomarkers and participant age, the B-HEALED model successfully distinguished participants that will develop AD dementia symptoms (82 with Prodromal AD and 83 with AD dementia) from non-AD subjects (71 individuals) with a specificity of 93.0% and sensitivity of 65.4% (AUROC=81.9%, p<0.001) during internal validation. When the amyloid status (derived from CSF or PET scans) and the B-HEALED model were applied in association, with individuals being categorized as AD if they tested positive in both tests, we achieved 100% specificity and 52.8% sensitivity. This performance was consistent in blind external validation, underscoring the model’s reliability on independent datasets.

Conclusions

The B-HEALED test, utilizing multiomics blood-based biomarkers, demonstrates high predictive specificity in identifying AD patients within the cognitively impaired population, minimizing false positives. When used alongside amyloid screening, it effectively identifies a nearly pure prodromal AD cohort. These results bear significant implications for refining clinical trial inclusion criteria, facilitating drug development and validation, and accurately identifying patients who will benefit the most from disease-modifying AD treatments.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Blood-based biomarkers, Alzheimer’s predementia, animal model, machine learning, mass spectrometry


Mappa


 How to cite this article: B. Souchet, A. Michail, M. Heuillet, et al. Multiomics Blood-Based Biomarkers Predict Alzheimer’s Predementia with High Specificity in a Multicentric Cohort Study. J Prev Alz Dis 2024; jpad.2024.34


© 2024  THE AUTHORS. Published by Elsevier Masson SAS on behalf of SERDI Publisher.. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 11 - N° 3

P. 567-581 - Maggio 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU): Trial Satisfaction and Attitudes towards Future Clinical Trials
  • Haiyan Liu, J. Li, E. Ziegemeier, S. Adams, E. McDade, D.B. Clifford, Y. Cao, G. Wang, Y. Li, S.L. Mills, A.M. Santacruz, S. Belyew, J.D. Grill, B.J. Snider, C.J. Mummery, G. Surti, D. Hannequin, D. Wallon, S.B. Berman, I.Z. Jimenez-Velazquez, E.D. Roberson, C.H. van Dyck, L.S. Honig, R. Sanchez-Valle, W.S. Brooks, S. Gauthier, D. Galasko, C.L. Masters, J. Brosch, G.-Y.R. Hsiung, S. Jayadev, M. Formaglio, M. Masellis, R. Clarnette, J. Pariente, B. Dubois, F. Pasquier, R.J. Bateman, Jorge J. Llibre-Guerra, DIAN-TU Study Team
| Articolo seguente Articolo seguente
  • Critical Values of Daily Sedentary Time and Its Longitudinal Association with Mild Cognitive Impairment Considering APOE ε4: A Prospective Cohort Study
  • H. Duan, X. He, T. Yang, N. Xu, Z. Wang, Z. Li, Y. Chen, Y. Du, M. Zhang, J. Yan, C. Sun, G. Wang, F. Ma, Wen Li, Xin Li, Guowei Huang

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.