Brain network analysis in Parkinson's disease patients based on graph theory - 02/09/24

Doi : 10.1016/j.neuri.2024.100173 
Shirin Akbari a, Mohammad Reza Deevband a, , Amin Asgharzadeh Alvar a, Emadodin Fatemi Zadeh a, Hashem Rafie Tabar a, Patrick Kelley b, Meysam Tavakoli c,
a Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran 
b Physics Department, Purdue University, Indianapolis, IN, USA 
c Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Development of Parkinson's disease causes functional impairment in the brain network of Parkinson's patients. The aim of this study is to analyze brain networks of people with Parkinson's disease based on higher resolution parcellations and newer graphical features. The topological features of brain networks were investigated in Parkinson's patients (19 individuals) compared to healthy individuals (17 individuals) using graph theory. In addition, four different methods were used in graph formation to detect linear and nonlinear relationships between functional magnetic resonance imaging (fMRI) signals. The functional connectivity between the left precuneus and the left amygdala, as well as between the vermis 1-2 and the left temporal lobe was evaluated for the healthy and the patient groups. The difference between the healthy and patient groups was evaluated by parametric t-test and nonparametric U-test. Based on the results, Parkinson's patients exhibited a noteworthy reduction in centrality criterion compared to healthy subjects. Moreover, alterations in the regional features of the brain network were evident. Applying centrality criteria and correlation coefficients revealed significant distinctions between healthy subjects and Parkinson's patients across various brain areas. The results obtained for topological features indicate changes in the functional brain network of Parkinson's patients. Finally, similar areas obtained by all three methods of graph formation in the evaluation of connectivity between paired regions in the brain network of Parkinson's patients increased the reliability of the results.

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Analyze brain networks in Parkinson's disease using high-resolution parcellations and graph-based features.
Topological features of brain networks were investigated in PD compared to healthy individuals using graph theory.
Different methods were used in graph formation to detect linear and nonlinear relationships between fMRI signals.
The difference between the healthy and patient groups was evaluated by non-parametric statistical models.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Graph theory, Brain network, Parkinson's patient, fMRI


Mappa


© 2024  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 4 - N° 4

Articolo 100173- Dicembre 2024 Ritorno al numero
Articolo seguente Articolo seguente
  • Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood
  • Prerna Singh, Ayush Tripathi, Tapan Kumar Gandhi, Lalan Kumar

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.