Abbonarsi

Distinct proteomes and allergen profiles appear across the life-cycle stages of Alternaria alternata - 05/08/24

Doi : 10.1016/j.jaci.2024.03.026 
Michael Brad Strader, PhD a, , Aishwarya L. Saha, BS a, Chantal Fernandes, PhD b, Kavita Sharma, PhD a, Christian Hadiwinarta, MSc a, Daniela Calheiros, MSc b, Gonçalo Conde-de-Oliveira, MSc b, Teresa Gonçalves, PhD b, Jay E. Slater, MD a
a Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Md 
b University of Coimbra, CNC-UC – Center for Neuroscience and Cell Biology, FMUC – Faculty of Medicine of the University of Coimbra, Coimbra, Portugal 

Corresponding author: Michael Brad Strader, PhD, Laboratory of Immunobiochemistry, Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993.Laboratory of ImmunobiochemistryDivision of BacterialParasitic and Allergenic ProductsOffice of Vaccines Research and ReviewCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration10903 New Hampshire AveSilver SpringMD20993

Abstract

Background

Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract–based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus.

Objective

We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in A alternata.

Methods

Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae.

Results

We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media.

Conclusions

Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.

Il testo completo di questo articolo è disponibile in PDF.

Key words : Allergen extracts, Alternaria, mold, proteome, allergens

Abbreviations used : DIA, MM


Mappa


© 2024  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 154 - N° 2

P. 424-434 - Agosto 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Identification of pyruvic and maleic acid as potential markers for disease activity and prognosis in chronic urticaria
  • Xingxing Jian, Guixue Hou, Liqiao Li, Zhuo Diao, Yingfang Wu, Jiayi Wang, Lu Xie, Cong Peng, Liang Lin, Jie Li
| Articolo seguente Articolo seguente
  • Patients taking benralizumab, dupilumab, or mepolizumab have lower postvaccination SARS-CoV-2 immunity
  • Martin C. Runnstrom, Pedro A. Lamothe, Caterina E. Faliti, Narayanaiah Cheedarla, Alberto Moreno, Mehul S. Suthar, Rishika Nahata, Mayuran Ravindran, Natalie S. Haddad, Andrea Morrison-Porter, Hannah Quehl, Richard P. Ramonell, Matthew Woodruff, Fabliha Anam, Rebeca Zhang, Colin Swenson, Carmen Polito, Wendy Neveu, Rahulkumar Patel, Natalia Smirnova, Doan C. Nguyen, Caroline Kim, Ian Hentenaar, Shuya Kyu, Sabeena Usman, Thuy Ngo, Zhenxing Guo, Hao Wu, John L. Daiss, Jiwon Park, Kelly E. Manning, Bursha Wali, Madison L. Ellis, Sunita Sharma, Fernando Holguin, Suneethamma Cheedarla, Andrew S. Neish, John D. Roback, Ignacio Sanz, F. Eun-Hyung Lee

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.