Abbonarsi

A new classification and laparoscopic treatment of extrahepatic choledochal cyst - 11/07/24

Doi : 10.1016/j.clinre.2024.102413 
Meng Tao a, 1, Xiaojun Wang b, 1, Jing Han c, Li Cao b, Jianwei Li b, Shuguo Zheng b,
a Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510250, PR China 
b Institute of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China 
c Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, PR China 

Correspondence author at: Institute of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.Institute of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical UniversityChongqing400038PR China

Highlights

Utilization of cluster analysis in morphological research.
Development of a novel EHBD classification system using computerized analysis and clinical characteristics.
Establishment of minimally invasive treatment strategies based on clinical data of various EHBD types.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Background

Prior typing methods fail to provide predictive insights into surgical complexities for extrahepatic choledochal cyst (ECC). This study aims to establish a new classification system for ECC through clustering of imaging results. Additionally, it seeks to compare the differences among the identified ECC types and assess the levels of surgical difficulty.

Methods

The imaging data of 124 patients were automatically grouped through a K-means clustering analysis. According to the characteristics of the new grouping, corrections and interventions were carried out to establish a new classification. Demographic data, clinical presentations, surgical parameters, complications, reoperation, and prognostic indicators were analyzed according to different types. Factors contributing to prolonged surgical time were also evaluated.

Results

A new classification system of ECC: Type A (upper segment), Type B (middle segment), Type C (lower segment), and Type D (entire bile duct). The incidences of comorbidities (calculus or infection) were significantly different (P = 0.000, P = 0.002). Additionally, variations in the incidence of postoperative biliary stricture were statistically significant (P = 0.046). The operative time was significantly different between groups (P = 0.001). Age, BMI > 30, classification, and the presence of combined stones exhibit a significant association with prolonged operative time (P = 0.002, P = 0.000, P = 0.011, P = 0.011).

Conclusion

In conclusion, our utilization of machine learning-driven cluster analysis has enabled the creation of a novel extrahepatic biliary dilatation typology. This classification, in conjunction with factors like age, combined stone occurrence, and obesity, significantly influences the complexity of laparoscopic choledochal cyst surgery, offering valuable insights for improved surgical treatment.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : K-means, Clustering, Unsupervised learning, Choledochal cyst, Laparoscopic surgery


Mappa


© 2024  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 48 - N° 7

Articolo 102413- Agosto 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Identification of pediatric activated T-cell hepatitis using clinical immune studies
  • Catherine A Chapin, Tamir Diamond, Adriana Perez, Portia A Kreiger, Kathleen M Loomes, Edward M Behrens, Estella M Alonso
| Articolo seguente Articolo seguente
  • Palliative care and end stage liver disease: A survey study comparing perspectives of hepatology and palliative care physicians and clinical scenarios that could require palliative care intervention
  • Hugo M Oliveira, José Presa Ramos, Francisca Rego, Rui Nunes

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.