Abbonarsi

Validation of a natural language processing algorithm using national reporting data to improve identification of anesthesia-related ADVerse evENTs: The “ADVENTURE” study - 11/06/24

Doi : 10.1016/j.accpm.2024.101390 
Paul M Mertes a, e, 1, Claire Morgand b, 1, Paul Barach c, d, Geoffrey Jurkolow e, , Karen E. Assmann b, Edouard Dufetelle f, Vincent Susplugas f, Bilal Alauddin f, Patrick Georges Yavordios e, Jean Tourres e, Jean-Marc Dumeix e, Xavier Capdevila g, h
a Department of Anesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, EA 3072, FMTS de Strasbourg, Strasbourg, France 
b Evaluation Department and Tools for Quality and Safety of Care, French national authority for health (Haute Autorité de Santé - EvOQSS), Saint Denis, France 
c Thomas Jefferson School of Medicine, Philadelphia, USA 
d Sigmund Freud University, Vienna, Austria 
e CFAR - Collège Français des Anesthésistes-Réanimateurs, 75016 Paris, France 
f Collective Thinking, 23 rue Yves Toudic, 75010 Paris, France 
g Department of Anesthesiology and Critical Care Medicine, Lapeyronie University Hospital, 34295 Montpellier Cedex 5, France 
h Inserm Unit 1298 Montpellier NeuroSciences Institute, Montpellier University, 34295 Montpellier Cedex 5, France 

Corresponding author.

Abstract

Background

Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives.

Methods

We used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists.

Results

The machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were “difficult orotracheal intubation” (16.9% of AE reports), “medication error” (10.5%), and “post-induction hypotension” (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for “difficult intubation”, 43.2% sensitivity, and 98.9% specificity for “medication error.”

Conclusions

This unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety.

Trial Registration

The study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Adverse events, Patient safety, Natural language processing, Artificial intelligence, Quality improvement


Mappa


© 2024  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 43 - N° 4

Articolo 101390- Agosto 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Intraoperative dexamethasone is associated with a lower risk of respiratory failure in thoracic surgery: Observational cohort study (SURTHODEX)
  • Rayan Braik, Yohan Germain, Thomas Flet, Anis Chaba, Piere-Grégoire Guinot, Leo Garreau, Stephane Bar, Momar Diouf, Osama Abou-Arab, Yazine Mahjoub, Pascal Berna, Hervé Dupont
| Articolo seguente Articolo seguente
  • Pediatric obstructive sleep apnea: a prospective observational study of respiratory events in the immediate recovery period after adenotonsillectomy
  • Proshad N. Efune, Pedro Pinales, Jenny Park, Kiley F. Poppino, Ron B. Mitchell, Peter Szmuk

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.