Abbonarsi

Development and validation of a novel nomogram model to assess the risk of gastric contents in outpatients undergoing elective sedative gastrointestinal endoscopy procedures - 07/02/24

Doi : 10.1016/j.clinre.2023.102277 
Yuqing Yan a, b, 1, Yuzhan Jin a, b, 1, Yuanyuan Cao c, 1, Chen Chen b, Xiuxiu Zhao c, Huaming Xia d, Libo Yan e, Yanna Si c, 2, , Jianjun Zou b, f, 2,
a School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 
b Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China 
c Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China 
d Nanjing Xiaheng Network System Co., Ltd., Nanjing, China 
e Jiangsu Kaiyuan Pharmaceutical Co., Ltd., Nanjing, China 
f Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China 

Corresponding author at: Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.Department of AnesthesiologyPerioperative and Pain MedicineNanjing First HospitalNanjing Medical UniversityNanjingChina.⁎⁎Corresponding author at: Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.Department of Clinical PharmacologyNanjing First HospitalNanjing Medical UniversityNanjingChina

Highlights

BBCMADE is a favorable tool for assessing gastric contents in endoscopic patients.
This convenient model can be used prior to gastric ultrasound.
Predicted outcomes can be used for fasting education during anesthesia evaluation.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Background

Gastric contents may contribute to patients' aspiration during anesthesia. Ultrasound can accurately assess the risk of gastric contents in patients undergoing sedative gastrointestinal endoscopy (GIE) procedures, but its efficiency is limited. Therefore, developing an accurate and efficient model to predict gastric contents in outpatients undergoing elective sedative GIE procedures is greatly desirable.

Methods

This study retrospectively analyzed 1501 patients undergoing sedative GIE procedures. Gastric contents were observed under direct gastroscopic vision and suctioned through the endoscope. High-risk gastric contents were defined as having solid content or liquid volume > 25 ml and pH < 2.5; otherwise, they were considered low-risk gastric contents. Univariate analysis and multivariate analysis were used to select the independent risk factors to predict high-risk gastric contents. Based on the selected independent risk factors, we assigned values to each independent risk factor and established a novel nomogram. The performance of the nomogram was verified in the testing cohort by the metrics of discrimination, calibration, and clinical usefulness. In addition, an online accessible web calculator was constructed.

Results

We found BMI, cerebral infarction, cirrhosis, male, age, diabetes, and gastroesophageal reflux disease were risk factors for gastric contents. The AUROCs were 0.911 and 0.864 in the development and testing cohort, respectively. Moreover, the nomogram showed good calibration ability. Decision curve analysis and Clinical impact curve demonstrated that the predictive nomogram was clinically useful. The website of the nomogram was dynnomapp/.

Conclusions

This study demonstrates that clinical variables can be combined with algorithmic techniques to predict gastric contents in outpatients. Nomogram was constructed from routine variables, and the web calculator had excellent clinical applicability to assess the risk of gastric contents accurately and efficiently in outpatients, assist anesthesiologists in assessment and identify the most appropriate patients for ultrasound.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Nomogram, Gastric contents, Aspiration, Outpatient, Gastrointestinal endoscopy

Abbreviations : GIE, ASA PS, BMI, HGB, GERD, IQR, AUROC, ROC, DCA, CIC, PPV, NPV


Mappa


© 2023  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 48 - N° 2

Articolo 102277- Febbraio 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Predicting cancer-specific mortality in T1/2 hepatocellular carcinoma after radiofrequency ablation by competing risk nomogram: A population-based analysis
  • Qifan He, Yue Xiong, Pengcheng Xia, Xiaoyu Yang, Yihui Yu, Zhonghua Chen
| Articolo seguente Articolo seguente
  • Fecal Incontinence Subtype Assessment (FI-SA): Validation of a new tool to distinguish among subtypes of fecal incontinence
  • Audrey Julienne, Guillaume Gourcerol, Gérard Amarenco, Nicolas Turmel, Anne-Marie Leroi, Charlotte Desprez

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.