Abbonarsi

ealtime Diagnosis from lectrocardiogram Artificial Intelligence-uided Screening for trial Fibrillation with ong Follow-Up (REGAL): Rationale and design of a pragmatic, decentralized, randomized controlled trial - 07/12/23

Doi : 10.1016/j.ahj.2023.10.005 
Xiaoxi Yao, PhD a, b, , Zachi I. Attia, PhD b, Emma M. Behnken, BA c, Melissa S. Hart, BS a, Shealeigh A. Inselman, BS a, Kayla C. Weber, BS a, Fan Li, PhD d, Nikki H. Stricker, PhD, ABPP, LP e, John L. Stricker, PhD, MS f, Paul A. Friedman, MD b, Peter A. Noseworthy, MD b
a Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 
b Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 
c Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN 
d Department of Biostatistics, Yale School of Public Health, New Haven, CT 
e Division of Neurocognitive Disorders, Mayo Clinic, Rochester, MN 
f Information Technology, Mayo Clinic, Rochester, MN 

Reprint requests: Xiaoxi Yao, PhD Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905Robert D. and Patricia E. Kern Center for the Science of Health Care DeliveryMayo Clinic200 First Street SWRochesterMN55905

Riassunto

Background

Atrial fibrillation (AF) is associated with increased risks of stroke and dementia. Early diagnosis and treatment could reduce the disease burden, but AF is often undiagnosed. An artificial intelligence (AI) algorithm has been shown to identify patients with previously unrecognized AF; however, monitoring these high-risk patients has been challenging. Consumer wearable devices could be an alternative to enable long-term follow-up.

Objectives

To test whether Apple Watch, used as a long-term monitoring device, can enable early diagnosis of AF in patients who were identified as having high risk based on AI-ECG.

Design

The Realtime diagnosis from Electrocardiogram (ECG) Artificial Intelligence (AI)-Guided Screening for Atrial Fibrillation (AF) with Long Follow-up (REGAL) study is a pragmatic trial that will accrue up to 2,000 older adults with a high likelihood of unrecognized AF determined by AI-ECG to reach our target of 1,420 completed participants. Participants will be 1:1 randomized to intervention or control and will be followed up for 2 years. Patients in the intervention arm will receive or use their existing Apple Watch and iPhone and record a 30-second ECG using the watch routinely or if an abnormal heart rate notification is prompted. The primary outcome is newly diagnosed AF. Secondary outcomes include changes in cognitive function, stroke, major bleeding, and all-cause mortality. The trial will utilize a pragmatic, digitally-enabled, decentralized design to allow patients to consent and receive follow-up remotely without traveling to the study sites.

Summary

The REGAL trial will examine whether a consumer wearable device can serve as a long-term monitoring approach in older adults to detect AF and prevent cognitive function decline. If successful, the approach could have significant implications on how future clinical practice can leverage consumer devices for early diagnosis and disease prevention.

Clinicaltrials.gov

: NCT05923359

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2023  Elsevier Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 267

P. 62-69 - Gennaio 2024 Ritorno al numero
Articolo precedente Articolo precedente
  • Cardiovascular impact of near complete estrogen deprivation in premenopausal women with breast cancer: The CROWN study
  • Alexandra Thomas, Nathaniel S. O'Connell, Emily Douglas, Sarah Hatcher, Carolyn J. Park, Susan Dent, Katherine Ansley, Igor Klem, Rani Bansal, Kelly Westbrook, W. Gregory Hundley, Wendy Bottinor, Mary Helen Hackney, Karl M. Richardson, Sherona R. Sirkisoon, Ralph B. D'Agostino, Jennifer H. Jordan
| Articolo seguente Articolo seguente
  • The gut microbiota and coronary artery calcification in Japanese men
  • Yukiko Okami, Hisatomi Arima, Keiko Kondo, Zhang Hexun, Yuichiro Yano, Aya Kadota, Sayuki Torii, Takashi Hisamatsu, Akira Fujiyoshi, Sayaka Kadowaki, Yoshiyuki Watanabe, Akira Andoh, Yoshihisa Nakagawa, Hirotsugu Ueshima, Katsuyuki Miura, SESSA Research Group

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.