Abbonarsi

Machine learning models predict liver steatosis but not liver fibrosis in a prospective cohort study - 11/08/23

Doi : 10.1016/j.clinre.2023.102181 
Behrooz Mamandipoor a, Sarah Wernly b, Georg Semmler c, Maria Flamm d, Christian Jung e, Elmar Aigner f, Christian Datz b, Bernhard Wernly b, d, #, Venet Osmani g, #,
a Fondazione Bruno Kessler Research Institute, Trento, Italy 
b Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria 
c Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria 
d Institute of general practice, family medicine and preventive medicine, Paracelsus Medical University, Salzburg, Austria 
e Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany 
f Clinic I for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria 
g Information School, University of Sheffield, United Kingdom 

Corresponding author.

Highlights

Liver steatosis risk can be estimated by AI models, using routinely collected clinical data, paving the way towards a wide-scale screening instrument.
Routinely collected clinical data is not sufficient for a high-performance estimation of liver fibrosis.
Patient-reported outcomes, such as nutrition and lifestyle, do not contribute to risk estimation neither for liver steatosis nor fibrosis.
Male and female subjects should be treated differently as there are significant differences in estimating risk of liver steatosis and fibrosis, between genders.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Introduction

Screening for liver fibrosis continues to rely on laboratory panels and non-invasive tests such as FIB-4-score and transient elastography. In this study, we evaluated the potential of machine learning (ML) methods to predict liver steatosis on abdominal ultrasound and liver fibrosis, namely the intermediate-high risk of advanced fibrosis, in individuals participating in a screening program for colorectal cancer.

Methods

We performed ultrasound on 5834 patients admitted between 2006 and 2020, and transient elastography on a subset of 1240 patients. Steatosis on ultrasound was diagnosed if liver areas showed a significantly increased echogenicity compared to the renal parenchyma. Liver fibrosis was defined as a liver stiffness measurement ≥8 kPa in transient elastography. We evaluated the performance of three algorithms, namely Extreme Gradient Boosting, Feed-Forward neural network and Logistic Regression, deriving the models using data from patients admitted from January 2007 up to January 2016 and prospectively evaluating on the data of patients admitted from January 2016 up to March 2020. We also performed a performance comparison with the standard clinical test based on Fibrosis-4 Index (FIB-4).

Results

The mean age was 58±9 years with 3036 males (52%). Modelling laboratory parameters, clinical parameters, and data on eight food types/dietary patterns, we achieved high performance in predicting liver steatosis on ultrasound with AUC of 0.87 (95% CI [0.87–0.87]), and moderate performance in predicting liver fibrosis with AUC of 0.75 (95% CI [0.74–0.75]) using XGBoost machine learning algorithm. Patient-reported variables did not significantly improve predictive performance. Gender-specific analyses showed significantly higher performance in males with AUC of 0.74 (95% CI [0.73–0.74]) in comparison to female patients with AUC of 0.66 (95% CI [0.65–0.66]) in prediction of liver fibrosis. This difference was significantly smaller in prediction of steatosis with AUC of 0.85 (95% CI [0.83–0.87]) in female patients, in comparison to male patients with AUC of 0.82 (95% CI [0.80–0.84]).

Conclusion

ML based on point-prevalence laboratory and clinical information predicts liver steatosis with high accuracy and liver fibrosis with moderate accuracy. The observed gender differences suggest the need to develop gender-specific models.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Steatosis, Liver fibrosis, Machine learning, Predictive modelling, Gender differences, Patient self-reported outcomes


Mappa


© 2023  The Authors. Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 47 - N° 7

Articolo 102181- Agosto 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Effects of saroglitazar in the treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis
  • Sanjay Bandyopadhyay, Shambo Samrat Samajdar, Saibal Das
| Articolo seguente Articolo seguente
  • Factors associated with discordance in the assessment of fibrosis stage between transient elastography and liver biopsy in NAFLD patients
  • Meng Lu, Mingyu Zhu, Hu Li, Qingling Wang, Yuting Qian, Mingjie Wang, Li Chen

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.