Abbonarsi

A new machine learning algorithm to predict veno-arterial ECMO implantation after post-cardiotomy low cardiac output syndrome - 18/01/23

Doi : 10.1016/j.accpm.2022.101172 
Louis Morisson a, , Baptiste Duceau a, Hermann Do Rego a, Aymeric Lancelot a, Geoffroy Hariri a, Ahmed Charfeddine a, Pascal Laferrière-Langlois b, c, Philippe Richebé b, c, Guillaume Lebreton d, Sophie Provenchère e, Adrien Bouglé a
a Department of Anesthesiology and Critical Care Medicine, La Pitié-Salpêtrière Hospital, Paris, France. Sorbonne University, GRC 29, AP-HP, DMU DREAM 
b Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de l’Est de L’Ile de Montréal, Montréal, Québec, Canada 
c Department of Anesthesiology and Pain Medicine, University of Montreal, Montréal, Québec, Canada 
d Department of Cardiac and Thoracic Surgery, La Pitié-Salpêtrière Hospital, Paris, France. Sorbonne University, GRC 29, AP-HP, DMU DREAM 
e Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard University Hospital, Paris, France 

Corresponding author at: Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de l’Est de L’Ile de Montréal, 5415 Boulevard de l’Assomption, Montréal, Québec, H1T 2M4, Canada.Department of Anesthesiology and Pain MedicineMaisonneuve-Rosemont HospitalCIUSSS de l’Est de L’Ile de Montréal5415 Boulevard de l’AssomptionMontréalQuébecH1T 2M4Canada

Highlights

Post-cardiotomy low cardiac output syndrome is a life-threatening complication.
In the case of refractory shock, circulatory support with ECMO may be necessary.
We developed a machine-learning algorithm to predict the need for rescue ECMO.
Our algorithm showed great performance and also identified predictive features.
The use of this algorithm may help clinicians’ decision in this setting.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Background

Post-cardiotomy low cardiac output syndrome (PC-LCOS) is a life-threatening complication after cardiac surgery involving a cardiopulmonary bypass (CPB). Mechanical circulatory support with veno-arterial membrane oxygenation (VA-ECMO) may be necessary in the case of refractory shock. The objective of the study was to develop a machine-learning algorithm to predict the need for VA-ECMO implantation in patients with PC-LCOS.

Patients and methods

Patients were included in the study with moderate to severe PC-LCOS (defined by a vasoactive inotropic score (VIS) > 10 with clinical or biological markers of impaired organ perfusion or need for mechanical circulatory support after cardiac surgery) from two university hospitals in Paris, France. The Deep Super Learner, an ensemble machine learning algorithm, was trained to predict VA-ECMO implantation using features readily available at the end of a CPB. Feature importance was estimated using Shapley values.

Results

Between January 2016 and December 2019, 285 patients were included in the development dataset and 190 patients in the external validation dataset. The primary outcome, the need for VA-ECMO implantation, occurred respectively, in 16% (n = 46) and 10% (n = 19) in the development and the external validation datasets. The Deep Super Learner algorithm achieved a 0.863 (0.793−0.928) ROC AUC to predict the primary outcome in the external validation dataset. The most important features were the first postoperative arterial lactate value, intraoperative VIS, the absence of angiotensin-converting enzyme treatment, body mass index, and EuroSCORE II.

Conclusions

We developed an explainable ensemble machine learning algorithm that could help clinicians predict the risk of deterioration and the need for VA-ECMO implantation in moderate to severe PC-LCOS patients.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Post-cardiotomy, Low cardiac output syndrome, Extra-corporeal membrane oxygenation, Machine learning, Prediction, Deep super learner


Mappa


© 2022  Société française d'anesthésie et de réanimation (Sfar). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 42 - N° 1

Articolo 101172- Febbraio 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Effects of ferric carboxymaltose on hemoglobin level after cardiac surgery: A randomized controlled trial
  • Maha Houry, Joanna Tohme, Ghassan Sleilaty, Khalil Jabbour, Wissam Bou Gebrael, Victor Jebara, Samia Madi-Jebara
| Articolo seguente Articolo seguente
  • Epidemiology, risk factors and prognosis of ventilator-associated pneumonia during severe COVID-19: Multicenter observational study across 149 European Intensive Care Units
  • Marc Garnier, Jean-Michel Constantin, Nicholas Heming, Laurent Camous, Alexis Ferré, Keyvan Razazi, Nathanaël Lapidus, on behalf of the COVID-ICU Investigators

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.