Quantitative EEG features and machine learning classifiers for eye-blink artifact detection: A comparative study - 28/12/22

Doi : 10.1016/j.neuri.2022.100115 
Maliha Rashida , Mohammad Ashfak Habib
 Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Ocular artifact, namely eye-blink artifact, is an inevitable and one of the most destructive noises of EEG signals. Many solutions of detecting the eye-blink artifact were proposed. Different subsets of EEG features and Machine Learning (ML) classifiers were used for this purpose. But no comprehensive comparison of these features and ML classifiers was presented. This paper presents the comparison of twelve EEG features and five ML classifiers, commonly used in existing studies for the detection of eye-blink artifacts. An EEG dataset, containing 2958 epochs of eye-blink, non-eye-blink, and eye-blink-like (non-eye-blink) EEG activities, is used in this study. The performance of each feature and classifier has been measured using accuracy, precision, recall, and f1-score. Experimental results reveal that scalp topography is the most potential among the selected features in detecting eye-blink artifacts. The best performing classifier is Artificial Neural Network (ANN) among the five classifiers. The combination of scalp topography and ANN classifier performed as the most powerful feature-classifier combination. However, it is expected that the findings of this study will help the future researchers to select appropriate features and classifiers in building eye-blink artifact detection models.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : EEG, Eye blink artifact, Ocular artifact, Machine learning, Supervised learning


Mappa


© 2022  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 3 - N° 1

Articolo 100115- Marzo 2023 Ritorno al numero
Articolo precedente Articolo precedente
  • Contents
| Articolo seguente Articolo seguente
  • A connectome-based deep learning approach for Early MCI and MCI detection using structural brain networks
  • Shayan Kolahkaj, Hoda Zare

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.