Abbonarsi

A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma - 24/11/22

Doi : 10.1016/j.clinre.2022.102033 
Chao Ma a, , Huan Luo b
a Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 
b Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany 

Corresponding author at: Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaDepartment of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Highlights

In this study, we innovatively established the ICI profile of ESCC by mining GEO and TCGA databases and discovered a robust sixteen-gene prognostic signature from the ICI differences. Specifically, our novelty lay in using ICI profile, differential expression gene identification, univariate Cox models, and Lasso regression in the model training phase.
The adoption of an independent TCGA dataset, Kaplan-Meier analysis, Cox regression, ROC curve, IAUC, and IBS in the validation process, moreover, highlighted our innovativeness. Most importantly, we compared our signature with published research to prove ours' superiority.
At the end of the study, we discovered important mechanisms related to gene signature through GSEA, immune gene correlation analysis, and immune infiltration analysis and speculated that resting mast cells might potentially help the predictive ability of the signature.

Il testo completo di questo articolo è disponibile in PDF.

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis.

Methods

Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells’ roles in the gene signature's predicting capacity.

Results

A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability.

Conclusions

We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Esophageal squamous cell carcinoma, Immune infiltration, Tumor microenvironment, Gene signature, Biomarker


Mappa


© 2022  Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 46 - N° 10

Articolo 102033- Dicembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Reduced mastication is a risk factor for Rome IV postprandial distress syndrome in patients investigated with upper endoscopy
  • Roberta Neuwald Pauletti, Sidia M Callegari-Jacques, Laura Fornari, Iran de Moraes, Fernando Fornari
| Articolo seguente Articolo seguente
  • Impact of metabolic syndrome on the short- and long-term outcomes for the elderly patients with gastric cancer after radical gastrectomy
  • He Wu, Hao-Jie Jiang, Su-Lin Wang, Xi-Yi Chen, Liang-Liang Ma, Zhen Yu, Chong-Jun Zhou

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.