Gradient boosting decision-tree-based algorithm with neuroimaging for personalized treatment in depression - 19/11/22

Doi : 10.1016/j.neuri.2022.100110 
Farzana Z. Ali a, , Kenneth Wengler a, b , Xiang He c, d, 1 , Minh Hoai Nguyen e , Ramin V. Parsey f , Christine DeLorenzo a, b, f
a Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 
b Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA 
c Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA 
d Department of Radiology, Northshore University Hospital, Manhasset, NY, USA 
e Department of Computer Science, Stony Brook University, Stony Brook, NY, USA 
f Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Introduction

Pretreatment positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and magnetic resonance spectroscopy (MRS) may identify biomarkers for predicting remission (absence of depression). Yet, no such image-based biomarkers have achieved clinical validity. The purpose of this study was to identify biomarkers of remission using machine learning (ML) with pretreatment FDG-PET/MRS neuroimaging, to reduce patient suffering and economic burden from ineffective trials.

Methods

This study used simultaneous PET/MRS neuroimaging from a double-blind, placebo-controlled, randomized antidepressant trial on 60 participants with major depressive disorder (MDD) before initiating treatment. After eight weeks of treatment, those with ≤7 on 17-item Hamilton Depression Rating Scale were designated a priori as remitters (free of depression, 37%). Metabolic rate of glucose uptake (metabolism) from 22 brain regions were acquired from PET. Concentrations (mM) of glutamine and glutamate and gamma-aminobutyric acid (GABA) in anterior cingulate cortex were quantified from MRS. The data were randomly split into 67% train and cross-validation ( ), and 33% test ( ) sets. The imaging features, along with age, sex, handedness, and treatment assignment (selective serotonin reuptake inhibitor or SSRI vs. placebo) were entered into the eXtreme Gradient Boosting (XGBoost) classifier for training.

Results

In test data, the model showed 62% sensitivity, 92% specificity, and 77% weighted accuracy. Pretreatment metabolism of left hippocampus from PET was the most predictive of remission.

Conclusions

The pretreatment neuroimaging takes around 60 minutes but has potential to prevent weeks of failed treatment trials. This study effectively addresses common issues for neuroimaging analysis, such as small sample size, high dimensionality, and class imbalance.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Highlights

Pretreatment imaging can predict remission with 77% weighted accuracy.
The predictive performance does not differ by sex or treatment assignment.
Pretreatment metabolism of left hippocampus is the most predictive of remission.
Outlier removal improves model performance for predicting remission.
Synthetic data generation is an effective way to address class imbalance.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Artificial intelligence, Imaging informatics, Medical imaging, FDG PET, Magnetic resonance spectroscopy, XGBoost


Mappa


© 2022  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 2 - N° 4

Articolo 100110- Dicembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Multiagent mobility and lifestyle recommender system for individuals with visual impairment
  • Kuo-Pao Tsai, Feng-Chao Yang, Chuan-Yi Tang
| Articolo seguente Articolo seguente
  • A deep dive into metacognition: Insightful tool for moral reasoning and emotional maturity
  • Sunder Kala Negi, Yaisna Rajkumari, Minakshi Rana

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.