Abbonarsi

“Looking outside the forensic toxicology box – An approach to link results from the lab to public health” - 15/08/22

Doi : 10.1016/j.toxac.2022.06.324 
Stefania Oliverio 1, 2, , Ariana Zeka 2, Giovanni Leonardi 3, 4, Vincent Varlet 5
1 Laboratoire National de Santé, Forensic Toxicology Service, Dudelange, Luxembourg 
2 College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom 
3 Directorate for Radiation Chemical and Environmental Hazards, UK Health Security Agency, Didcot, United Kingdom 
4 Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom 
5 Swiss Human Institute of Forensic Taphonomy, Centre Universitaire Romand de Médicine Légale, Lausanne, Switzerland 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Riassunto

Objective

Exposure to environmental contaminants from air pollution is being increasingly identified as a significant cause for a large portion of the global death burden and associated with severe adverse health outcomes, including pulmonary, cardiovascular or immunologic and neurologic diseases. Among these air pollutants, carbon monoxide (CO) finds its place as one of the main “suspects”. Especially in enclosed spaces CO poses a great health risk – whether its low level chronic exposures leading to permanent neurologic disorders or acute exposures that lead to death. In both cases, the job of a toxicologist is to accurately detect CO by using the appropriate analytical method. The job of an epidemiologist is to associate the CO levels to a health outcome. Errors in the exposure measurement can lead to real associations not being detected. Therefore, we reviewed measurement methods used for CO measurement and identified key sources of error, which could contribute to exposure misclassification.

Methods

A novel approach to more accurately determine the total amount of CO in blood (TBCO) via gas-chromatography mass spectrometry (GC-MS) was developed and validated. The results obtained from this method were then used to “feed” CO exposure assessments. Exposure assessments in public health represent the tool that from exposure estimates lead to determination of risk estimates. Using the previously identified key sources of error together with the results obtained from the improved measurement method, we developed a simulation model to quantify the impact that changes in the error due to measurement improvement could have on the relative risk (RR) of CO exposure estimates in a study using exhaled breath CO (exCO) and personal CO monitors (pCO) to measure CO.

Results

Choice of biomarker, analytical method, number of samples/measurements, time of sampling, inter-individual variabilities and use of averages for population data were some of the identified potential sources of error and can contribute from 5% up to 80% to the total measurement error. The novel CO measurement method leads to improvements in CO concentrations ranging from 20%–80% (compared to currently used methods). When applying this to the simulation model, the RR was increased up to 18.3% for exCO and up to 30% for pCO.

Discussion

An improved measurement method for TBCO was validated and has shown promising results in improving accuracy of CO determinations in blood as well as showing better stability to a variety of storage conditions in clinical and forensic settings.

Application of this method to exposure assessment data lead to significant reduction of measurement error, resulting in CO exposure estimates closer to the true CO burden on the population.

Conclusion

Improvement of the CO measurement method not only directly affects the results obtained in clinical and forensic cases by allowing otherwise undetected cases to be known, but it can also indirectly influence the data that is used by public health authorities to create guidelines, to generate prevention, treatment and training plans, ultimately improving global health. The model used here for CO exposure can easily be expanded and applied to other types of exposures.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2022  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 34 - N° 3S

P. S19-S20 - Settembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • “Spice”-related deaths in and around Munich, Germany: A retrospective look at the role of synthetic cannabinoids in our postmortem cases over a seven-year period (2014–2020)
  • Olwen Groth, Gabriele Roider, Verena Angerer, Jan Schäper, Matthias Graw, Frank Musshoff, Volker Auwärter
| Articolo seguente Articolo seguente
  • Allometric scaling – A useful tool for the extrapolation of toxicokinetic parameters of new psychoactive substances from animals to humans?
  • Nadine Schaefer

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.