Statistical valuation of cognitive load level hemodynamics from functional near-infrared spectroscopy signals - 14/07/22

Doi : 10.1016/j.neuri.2022.100042 
Farzana Khanam a, , A.B.M. Aowlad Hossain b, Mohiuddin Ahmad c
a Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh 
b Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh 
c Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

Human cognitive load level assessment is a challenging issue in the field of functional brain imaging. This work aims to study different cognitive load levels statistically from brain hemodynamics. Since the functional brain activities can be evaluated by functional near-infrared spectroscopy (fNIRS), a renowned fNIRS dataset is considered for this work. The dataset contains fNIRS data of three types of n-back tasks (0-back, 2-back, and 3-back) of twenty-six healthy volunteers. The fNIRS signals were pre-processed and separated according to the tasks and trials. The mean changes of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (dHb) are calculated from each trial corresponding to the tasks and tested for significant inference among three levels utilizing analysis of variance (ANOVA). From the outcomes of the ANOVA ( ), two significant channels (AF7 (frontal) and C3h (motor)) were figured out. The significance of these two channels was further justified using the property consistency test by three different time intervals of hemodynamics inside the total task period. The latter result also explored the functional pattern of the hemodynamics of AF7 and C3h positions. Moreover, two-level cognitive load (due to easy i.e., 0-back test and hard i.e., 2-back and 3-back task) is classified using support vector machine and found classification accuracy in average 73.40%±0.076 for HbO2 data and 71.48%±0.061 for dHb data. The study signposts the collective role played by both fNIRS signals and statistical valuation of functioning cognitive load efficacy to use fNIRS as a cognitive load assessment biomarker.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Functional near-infrared spectroscopy (fNIRS), Hemodynamics, Cognitive load, n-back test, ANOVA test, Grand average


Mappa


© 2022  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 2 - N° 3

Articolo 100042- Settembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Localization of stroke lesion in MRI images using object detection techniques: A comprehensive review
  • Sangeeta Rani, Bhupesh Kumar Singh, Deepika Koundal, Vijay Anant Athavale
| Articolo seguente Articolo seguente
  • The hemodynamic model solving algorithm by using fMRI measurements
  • Md. Roni Islam, Sheikh Md. Rabiul Islam

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.