Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction - 05/03/22

Doi : 10.1016/j.neuri.2022.100062 
Disha Sushant Wankhede , R. Selvarani
 Dept. of Computer Science and Engineering, Alliance College of Engineering, University Campus, Anekal, Bengaluru, Karnataka 562107, India 

Corresponding author.

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

A correct diagnosis of brain tumours is crucial to making an accurate treatment plan for patients with the disease and allowing them to live a long and healthy life. Among a few clinical imaging modalities, attractive reverberation imaging gives extra different data about the tissues. The use of MRI-Magnetic Resonance Imaging tests is a significant method for identifying disorders throughout the human body. Deep learning provides a solution for efficiently detecting Brain Tumour. The work has used MRI images for predicting the glioblastoma of brain tumours. Initially, data is retrieved from hospitals in form of an image database to continue with the brain tumour prediction. Pre-processing of dataset images is a mandatory step to enhance the accuracy and smooth line supplementary stages. The intensity value of each MRI (Magnetic Resonance Imaging) is subtracted by the mean intensity value and standard deviation of the brain region. Further, reduce the medical image noise by employing a bilateral filter. Further, the preprocessed medical images are used for extracting the radiomics features from images as well as tumour segmentation. Thus the work adopts the tumor is automatically segmented into four compartments using mutually exclusive rules using Modified Fuzzy C Means Clustering (MFCM). The clustering-based approach is very beneficial in MR tumour segmentation; it categorizes the pixels using certain radiomics features. The most important problem in the radiomics-based machine learning model is the dimension of data. Moreover, using a GWO (Grey Wolf Optimizer) with rough set theory, we propose a novel dimensionality reduction algorithm. This method is employed to find the significant features from the extracted images and differentiate HG (high-grade) and LG (Low-grade) from GBM while varying feature correlation limits were applied to remove redundant features. Finally, the article proposed the dynamic architecture of Multilevel Layer modelling in Faster R-CNN (MLL-CNN) approach based on feature weight factor and relative description model to build the selected features. This reduces the overall computation and performs long-tailed classification. This results in the development of CNN training performance more accurate. Results show that the general endurance expectation of GBM cerebrum growth with more prominent exactness of about 95% with the decreased blunder rate to be 2.3%. In the calculation of similarity between segmented tissues and ground truth, different tools produce correspondingly different predictions.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Glioblastoma, Magnetic resonance imaging, Modified fuzzy C means, Rough set theory-based grey wolf optimization, Overall survival prediction


Mappa


© 2022  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 2 - N° 4

Articolo 100062- Dicembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • MRI-based brain tumour image detection using CNN based deep learning method
  • Arkapravo Chattopadhyay, Mausumi Maitra
| Articolo seguente Articolo seguente
  • A systematic review on Data Mining Application in Parkinson's disease
  • Adesh Kumar Srivastava, Klinsega Jeberson, Wilson Jeberson

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.