Abbonarsi

Population health management of low-density lipoprotein cholesterol via a remote, algorithmic, navigator-executed program - 26/11/21

Doi : 10.1016/j.ahj.2021.08.017 
Jorge Plutzky, MD a, , Mark D. Benson, MD a, Kira Chaney, MPH a, Tiffany V. Bui, MPH a, Michael Kraft, PhD a, Lina Matta, PharmD a, Marian McPartlin, BA a, David Zelle, BA a, Christopher P. Cannon, MD a, Anton Dodek, MD b, Thomas A. Gaziano, MD a, Akshay S. Desai, MD a, Calum A. MacRae, MDPhD a, Benjamin M. Scirica, MD a, #
a Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 
b Blue Cross Blue Shield of Massachusetts, Boston, MA 

Reprint requests: Jorge Plutzky, MD, Division of Cardiovascular Medicine, Brigham and Women's Hospital, NRB 742, 77 Avenue Louis Pasteur, Boston MA 02115Division of Cardiovascular MedicineBrigham and Women's HospitalNRB 742, 77 Avenue Louis PasteurBostonMA02115

Riassunto

Background

Implementation of guideline-directed cholesterol management remains low despite definitive evidence establishing such measures reduce cardiovascular (CV) events, especially in high atherosclerotic CV disease (ASCVD) risk patients. Modern electronic resources now exist that may help improve health care delivery. While electronic medical records (EMR) allow for population health screening, the potential for coupling EMR screening to remotely delivered algorithmic population-based management has been less studied as a way of overcoming barriers to optimal cholesterol management.

Methods

In an academically affiliated healthcare system, using EMR screening, we sought to identify 1,000 high ASCVD risk patients not meeting guideline-directed low-density lipoprotein-cholesterol (LDL-C) goals within specific system-affiliated primary care practices. Contacted patients received cholesterol education and were offered a remote, guideline-directed, algorithmic cholesterol management program executed by trained but non–licensed “navigators” under professional supervision. Navigators used telephone, proprietary software and internet resources to facilitate algorithm-driven, guideline-based medication initiation/titration, and laboratory testing until patients achieved LDL-C goals or exited the program. As a clinical effectiveness program for cholesterol guideline implementation, comparison was made to those contacted patients who declined program-based medication management, and received education only, along with their usual care.

Results

1021 patients falling into guideline-defined high ASCVD risk groups warranting statin therapy (ASCVD, type 2 diabetes, LDL ≥ 190 mg/dL, calculated 10-year ASCVD risk ≥7.5%) and not achieving guideline-defined target LDL-C levels and/or therapy were identified and contacted. Among the 698 such patients who opted for program medication management, significant LDL-C reductions occurred in the total cohort (mean -65.4 mg/dL, 45% decrease), and each high ASCVD risk subgroup: ASCVD (-57.2 mg/dL, -48.0%); diabetes mellitus (-53.1 mg/dL, -40.0%); severe hypercholesterolemia (-76.3 mg/dL, -45.7%); elevated ASCVD 10-year risk (-62.8 mg/dL, -41.1%) (P<0.001 for all), without any significant complications. Among 20% of participants with reported statin intolerance, average LDL-C decreased from baseline 143 mg/dL to 85 mg/dL using mainly statins and ezetimibe, with limited PCSK9 inhibitor use. In comparison, eligible high ASCVD risk patients who were contacted but opted for education only, a 17% LDL-C decrease occurred over a similar timeframe, with 80% remaining with an LDL-C over 100 mg/dL.

Conclusions

A remote, algorithm-driven, navigator-executed cholesterol management program successfully identified high ASCVD risk undertreated patients using EMR screening and was associated with significantly improved guideline-directed LDL-C control, supporting this approach as a novel strategy for improving health care access and delivery.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


 This work was supported by Blue Cross Blue Shield of Massachusetts as a clinical effectiveness project.


© 2021  Pubblicato da Elsevier Masson SAS.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 243

P. 15-27 - gennaio 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Relationship of ejection fraction and natriuretic peptide trajectories in heart failure with baseline reduced and mid-range ejection fraction
  • Kenneth C. Bilchick, Patrick Stafford, Olusola Laja, Comfort Elumogo, Persey Bediako, Nora Tolbert, Douglas Sawch, Sthuthi David, Nishtha Sodhi, Anita Barber, Younghoon Kwon, Nishaki Mehta, Brandy Patterson, Khadijah Breathett, Sula Mazimba
| Articolo seguente Articolo seguente
  • In vivo evidence of atherosclerotic plaque erosion and healing in patients with acute coronary syndrome using serial optical coherence tomography imaging
  • Yanwei Yin, Chao Fang, Senqing Jiang, Jifei Wang, Yidan Wang, Junchen Guo, Fangmeng Lei, Sibo Sun, Xueying Pei, Ruyi Jia, Lulu Li, Yini Wang, Huai Yu, Jiannan Dai, Bo Yu

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2026 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.