Classification of optimal brain tissue using dynamic region growing and fuzzy min-max neural network in brain magnetic resonance images - 09/11/21

Doi : 10.1016/j.neuri.2021.100019 
Sunil L. Bangare
 Department of Information Technology, Sinhgad Academy of Engineering, Savitribai Phule Pune University, Pune, India 

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Abstract

On an MRI scan of the brain, the boundary between endocrine tissues is highly convoluted and irregular. Outdated segmentation algorithms face a severe test. Machine learning as a new sort of learning Here, researchers categorize normal and abnormal tissue using the fuzzy min-max neural network approach, which helps classify normal and abnormal tissues such as GM, CSF, WM, OCS, and OSS. This classification helps to explain the fuzzy min-max neural network method. Osseous Spongy Substance, SCALP, and Osseous Compact Substance are all MRI-classified as aberrant tissue in these tissues. Denoising and improving images can be accomplished using the Gabor filtering technique. Using the filtering method, the tumour component will be accurately identified during the segmentation operation. A dynamically changed region growing approach may be applied to a picture by modifying the Modified Region Growing method's two thresholds. This helps to raise Modified Region Growing's upper and lower bounds. Once the Region Growth is accomplished, the edges may be observed using the Modified Region Growing segmented image's Edge Detection approach. After removing the texture, an entropy-based method may be used to abstract the colour information. After the Dynamic Modified Region Growing phase findings have been merged with those from the texture feature generation phase, a distance comparison within regions is performed to combine comparable areas in the region merging phase. After tissues have been identified, a Fuzzy Min-Max Neural Network may be utilised to categorise them.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : Fuzzy min max neural network, Gabor filtering, Segmentation, Modified region growing, Optimization, Fruit-fly, Region merging


Mappa


© 2021  The Author(s). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 2 - N° 3

Articolo 100019- Settembre 2022 Ritorno al numero
Articolo precedente Articolo precedente
  • Engineering technology characterization of source solution for ZnO and their data analytics effect with aloe vera extract
  • Neha Verma, Manik Rakhra, Mohammed Wasim Bhatt, Urvashi Garg
| Articolo seguente Articolo seguente
  • Efficacy of video educational program on interception of urinary tract infection and neurological stress among teenage girls: An uncontrolled experimental study
  • Usha Rani Kandula, Daisy Philip, Sunitha Mathew, Anusha Subin, Godphy AA, Nidhi Alex, Renju B

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.