Abbonarsi

Rationale and design of a large population study to validate software for the assessment of atrial fibrillation from data acquired by a consumer tracker or smartwatch: The Fitbit heart study - 19/06/21

Doi : 10.1016/j.ahj.2021.04.003 
Steven A. Lubitz, MD, MPH a, b, , Anthony Z. Faranesh, PhD c, Steven J. Atlas, MD, MPH b, d, David D. McManus, MD, ScM e, Daniel E. Singer, MD b, d, Sherry Pagoto, PhD f, Alexandros Pantelopoulos, PhD c, Andrea S. Foulkes, PhD b, g
a Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 
b Harvard Medical School, Boston, MA 
c Fitbit, Inc, San Francisco, CA 
d Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 
e Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA 
f Department of Allied Health Sciences, University of Connecticut, Storrs, CT 
g Biostatistics Center, Massachusetts General Hospital, Boston, MA 

Reprint request: Steven A Lubitz, MD, MPH, Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, 3.188, Boston, MA 02114Cardiac Arrhythmia Service and Cardiovascular Research CenterMassachusetts General Hospital185 Cambridge Street, 3.188BostonMA02114

Graphical abstract




Image, graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Riassunto

Background

Early detection of atrial fibrillation or flutter (AF) may enable prevention of downstream morbidity. Consumer wrist-worn wearable technology is capable of detecting AF by identifying irregular pulse waveforms using photoplethysmography (PPG). The validity of PPG-based software algorithms for AF detection requires prospective assessment.

Methods

The Fitbit Heart Study (NCT04380415) is a single-arm remote clinical trial examining the validity of a novel PPG-based software algorithm for detecting AF. The proprietary Fitbit algorithm examines pulse waveform intervals during analyzable periods in which participants are sufficiently stationary. Fitbit consumers with compatible wrist-worn trackers or smartwatches were invited to participate. Enrollment began May 6, 2020 and as of October 1, 2020, 455,699 participants enrolled. Participants in whom an irregular heart rhythm was detected were invited to attend a telehealth visit and eligible participants were then mailed a one-week single lead electrocardiographic (ECG) patch monitor. The primary study objective is to assess the positive predictive value of an irregular heart rhythm detection for AF during the ECG patch monitor period. Additional objectives will examine the validity of irregular pulse tachograms during subsequent heart rhythm detections, self-reported AF diagnoses and treatments, and relations between irregular heart rhythm detections and AF episode duration and time spent in AF.

Conclusions

The Fitbit Heart Study is a large-scale remote clinical trial comprising a unique software algorithm for detection of AF. The study results will provide critical insights into the use of consumer wearable technology for AF detection, and for characterizing the nature of AF episodes detected using consumer-based PPG technology.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


© 2021  Elsevier Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 238

P. 16-26 - Agosto 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Randomized clinical trial to evaluate a routine full anticoagulation Strategy in Patients with Coronavirus Infection (SARS-CoV2) admitted to hospital: Rationale and design of the ACTION (AntiCoagulaTlon cOroNavirus)–Coalition IV trial
  • Renato D. Lopes, Pedro Gabriel Melo de Barros e Silva, Remo H.M. Furtado, Ariane Vieira Scarlatelli Macedo, Eduardo Ramacciotti, Lucas Petri Damini, Bruna Bronhara, Alexandre B. Cavalcanti, Regis G. Rosa, Luciano C.P. Azevedo, Viviane C. Veiga, Flávia R Machado, Luiz Eduardo Ritt, Priscilla de Aquino Martins, John H. Alexander, Alvaro Avezum, Otavio Berwanger, Coalition COVID-19 Brazil IV Investigators
| Articolo seguente Articolo seguente
  • Effects of the PCSK9 antibody alirocumab on coronary atherosclerosis in patients with acute myocardial infarction: a serial, multivessel, intravascular ultrasound, near-infrared spectroscopy and optical coherence tomography imaging study–Rationale and design of the PACMAN-AMI trial
  • Christian Zanchin, Konstantinos C. Koskinas, Yasushi Ueki, Sylvain Losdat, Jonas D. Häner, Sarah Bär, Tatsuhiko Otsuka, Andrea Inderkum, Maria Radu Juul Jensen, Jacob Lonborg, Gregor Fahrni, Anna S. Ondracek, Joost Daemen, Robert-Jan van Geuns, Juan F. Iglesias, Christian M. Matter, David Spirk, Peter Juni, Francois Mach, Dik Heg, Thomas Engstrom, Irene Lang, Stephan Windecker, Lorenz Räber

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.