Abbonarsi

A novel, automated, quantification of abnormal lung parenchyma in patients with COVID-19 infection: Initial description of feasibility and association with clinical outcome - 24/03/21

Doi : 10.1016/j.accpm.2020.10.014 
Eric Noll a, , Luc Soler d, e, Mickael Ohana f, Pierre-Olivier Ludes a, c, Julien Pottecher a, c, Elliott Bennett-Guerrero g, Francis Veillon h, Bernard Goichot i, Francis Schneider j, Nicolas Meyer k, Pierre Diemunsch a, b, c
a Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, France 
b Institut Hospitalo-Universitaire “Image-Guided Surgery”, Strasbourg University Hospital, Strasbourg, France 
c Equipe d’Accueil 3072, Medical School, Strasbourg University, Strasbourg, France 
d Digestive and Endocrine Surgery Department, Nouvel Hôpital Civil, Strasbourg, France 
e Visible Patient, Strasbourg, France 
f Department of Radiology, Nouvel Hôpital Civil, Strasbourg University Hospital, France 
g Department of Anesthesiology, Stony Brook Medicine, New-York, USA 
h Department of Radiology, Hautepierre Hospital, Strasbourg University Hospital, France 
i Department of Internal Medicine, Hautepierre Hospital, Strasbourg University Hospital, France 
j Médecine Intensive-Réanimation, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France 
k Department of Biostatistics, Strasbourg University Hospital, France 

Corresponding author at: Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg, France.Department of Anesthesiology and Intensive CareHautepierre HospitalStrasbourgFrance

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
Articolo gratuito.

Si connetta per beneficiarne

Summary

Objective

Ground-glass opacities are the most frequent radiologic features of COVID-19 patients. We aimed to determine the feasibility of automated lung volume measurements, including ground-glass volumes, on the CT of suspected COVID-19 patients. Our goal was to create an automated and quantitative measure of ground-glass opacities from lung CT images that could be used clinically for diagnosis, triage and research.

Design

Single centre, retrospective, observational study.

Measurements

Demographic data, respiratory support treatment (synthetised in the maximal respiratory severity score) and CT-images were collected. Volume of abnormal lung parenchyma was measured with conventional semi-automatic software and with a novel automated algorithm based on voxels X-Ray attenuation. We looked for the relationship between the automated and semi-automated evaluations. The association between the ground-glass opacities volume and the maximal respiratory severity score was assessed.

Main results

Thirty-seven patients were included in the main outcome analysis. The mean duration of automated and semi-automated volume measurement process were 15 (2) and 93 (41) min, respectively (p=8.05*10−8). The intraclass correlation coefficient between the semi-automated and automated measurement of ground-glass opacities and restricted normally aerated lung were both superior to 0.99. The association between the automated measured lung volume and the maximal clinical severity score was statistically significant for the restricted normally aerated (p=0.0097, effect-size: −385mL) volumes and for the ratio of ground-glass opacities/restricted normally aerated volumes (p=0.027, effect-size: 3.3).

Conclusion

The feasibility and preliminary validity of automated impaired lung volume measurements in a high-density COVID-19 cluster was confirmed by our results.

Il testo completo di questo articolo è disponibile in PDF.

Keywords : COVID-19, ARDS, CT-scan, Triage, Severity assessment, Infectious disease


Mappa


© 2020  Société française d'anesthésie et de réanimation (Sfar). Pubblicato da Elsevier Masson SAS. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 40 - N° 1

Articolo 100780- Febbraio 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Association between red blood cell distribution width and mortality of COVID-19 patients
  • Leonardo Lorente, María M. Martín, Mónica Argueso, Jordi Solé-Violán, Alina Perez, José Alberto Marcos Y Ramos, Luis Ramos-Gómez, Sergio López, Andrés Franco, Agustín F. González-Rivero, María Martín, Verónica Gonzalez, Julia Alcoba-Flórez, Miguel Ángel Rodriguez, Marta Riaño-Ruiz, Juan Guillermo O Campo, Lourdes González, Tamara Cantera, Raquel Ortiz-López, Nazario Ojeda, Aurelio Rodríguez-Pérez, Casimira Domínguez, Alejandro Jiménez
| Articolo seguente Articolo seguente
  • Collective aeromedical transport of COVID-19 critically ill patients in Europe: A retrospective study
  • Jean Turc, Henri-Louis Dupré, Madeleine Beaussac, Sophie Murris, Lionel Koch, Raphael Paris, Julia Di Filippo, Berangère Distinguin, Violaine Muller, Mathieu Boutonnet

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.