Abbonarsi

A multi-modal diagnostic model improves detection of cardiac amyloidosis among patients with diagnostic confirmation by cardiac biopsy - 23/01/21

Doi : 10.1016/j.ahj.2020.11.006 
Kathleen W. Zhang, MD a, , Ray Zhang, MD PhD b, Elena Deych, MS c, Keith E. Stockerl-Goldstein, MD d, John Gorcsan, MD c, Daniel J. Lenihan, MD a
a Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 
b Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 
c Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 
d Division of Oncology, Section of Bone Marrow Transplantation, Washington University School of Medicine, St. Louis, MO 

Reprint requests: Kathleen W. Zhang, MD, Cardio-Oncology Center of Excellence, Cardiovascular Division, Washington University School of Medicine, Campus Box 8086, 660 South Euclid Avenue, St. Louis, MO 63110-1093.Cardio-Oncology Center of ExcellenceCardiovascular DivisionWashington University School of MedicineCampus Box 8086, 660 South Euclid AvenueSt. LouisMO63110-1093

Riassunto

Background

Timely recognition of cardiac amyloidosis is clinically important, but the diagnosis is frequently delayed.

Objectives

We sought to identify a multi-modality approach with the highest diagnostic accuracy in patients evaluated by cardiac biopsy, the diagnostic gold standard.

Methods

Consecutive patients (N = 242) who underwent cardiac biopsy for suspected amyloidosis within an 18-year period were retrospectively identified. Cardiac biomarker, ECG, and echocardiography results were examined for correlation with biopsy-proven disease. A prediction model for cardiac amyloidosis was derived using multivariable logistic regression.

Results

The overall cohort was characterized by elevated BNP (median 727 ng/mL), increased left ventricular wall thickness (IWT; median 1.7 cm), and reduced voltage-to-mass ratio (median 0.06 mm/[g/m2]). One hundred and thirteen patients (46%) had either light chain (n = 53) or transthyretin (n = 60) amyloidosis by cardiac biopsy. A prediction model including age, relative wall thickness, left atrial pressure by E/e’, and low limb lead voltage (<0.5 mV) showed good discrimination for cardiac amyloidosis with an optimism-corrected c-index of 0.87 (95% CI 0.83-0.92). The diagnostic accuracy of this model (79% sensitivity, 84% specificity) surpassed that of traditional screening parameters, such as IWT in the absence of left ventricular hypertrophy on ECG (98% sensitivity, 20% specificity) and IWT with low limb lead voltage (49% sensitivity, 91% specificity).

Conclusion

Among patients with an advanced infiltrative cardiomyopathy phenotype, traditional biomarker, ECG, and echocardiography-based screening tests have limited individual diagnostic utility for cardiac amyloidosis. A prediction algorithm including age, relative wall thickness, E/e’, and low limb lead voltage improves the detection of cardiac biopsy-proven disease.

Il testo completo di questo articolo è disponibile in PDF.

Graphical abstract




Image, graphical abstract

Il testo completo di questo articolo è disponibile in PDF.

Abbreviations : AL, ATTR, AV, BNP, ECG, HFpEF, IQR, IWT, LGE, LS, LV, LVEF, LVIDd, MRI, PWT, RWT, TTE


Mappa


 Relationships with Industry: Dr. Zhang has received consulting fees from Eidos Therapeutics. Dr. Stockerl-Goldstein has received consulting fees from Celgene and grants from Millenium Pharmaceuticals, Janssen Pharmaceuticals, BioLineRx, Pfizer, and GlaxoSmithKline. Dr. Gorcsan has received research funding from GE Healthcare, TomTec, Hitachi, and Canon. Dr. Lenihan has received consulting fees from Lilly, Roche, Pfizer, Prothena, and Acorda, and research funding from Myocardial Solutions. All other authors have no corporate relationships to disclose.
 Disclosure: None of the authors report conflicts of interest.


© 2020  Elsevier Inc. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Vol 232

P. 137-145 - Febbraio 2021 Ritorno al numero
Articolo precedente Articolo precedente
  • Sex and race differences in safety and effectiveness of the HEART pathway accelerated diagnostic protocol for acute chest pain
  • Anna C. Snavely, Nella Hendley, Jason P. Stopyra, Kristin M. Lenoir, Brian J. Wells, David M. Herrington, Brian C. Hiestand, Chadwick D. Miller, Simon A. Mahler
| Articolo seguente Articolo seguente
  • Incidence of acute coronary syndrome during national lock-down: Insights from nationwide data during the Coronavirus disease 2019 (COVID-19) pandemic
  • Lauge Østergaard, Jawad Haider Butt, Kristian Kragholm, Morten Schou, Matthew Phelps, Rikke Sørensen, Morten Lamberts, Gunnar Gislason, Christian Torp-Pedersen, Lars Køber, Emil L. Fosbøl

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2024 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.