Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier - 05/04/19
Riassunto |
The authors present a Recurrent Neural Network classifier model that segments the walking data recorded with instrumented footwear. The signals from 3 piezoresistive sensors, a 3-axis accelerometer, and Euler angles are used to generate temporal gait characteristics of a user. The model was tested using a data set collected from 28 adults containing 4198 steps. The mean errors for heel strikes and toe-offs were −5.9 ± 37.1 and 11.4 ± 47.4 milliseconds. These small errors show that the algorithm can be reliably used to segment the gait recordings and to use this segmentation to estimate temporal parameters of the subjects.
Il testo completo di questo articolo è disponibile in PDF.Keywords : Wearables, Gait recognition, Machine learning, Neural network, Rehabilitation robotics
Mappa
Disclosure Statement: The authors have nothing to disclose. |
Vol 30 - N° 2
P. 355-366 - Maggio 2019 Ritorno al numeroBenvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.
Già abbonato a @@106933@@ rivista ?