Abbonarsi

Patient-Specific Virtual Simulation—A State of the Art Approach to Teach Renal Tumor Localization - 24/08/18

Doi : 10.1016/j.urology.2018.04.043 
Arun Rai a, , Jason M. Scovell a, b, , Ang Xu a, Adithya Balasubramanian a, Ryan Siller a, Taylor Kohn a, Young Moon a, Naveen Yadav a, Richard E. Link a, c,
a Scott Department of Urology, Houston, TX 
b Translational Biology and Molecular Medicine, Houston, TX 
c Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 

Address correspondence to: Richard E. Link, M.D., Ph.D., Carlton-Smith Endowed Chair in Urologic Education, Associate Professor of Urology, Scott Department of Urology, Baylor College of Medicine, 7200 Cambridge, MC BCM380, A10.107, Houston, TX 77030.Carlton-Smith Endowed Chair in Urologic Education, Associate Professor of Urology, Scott Department of UrologyBaylor College of Medicine7200 Cambridge, MC BCM380, A10.107HoustonTX77030
In corso di stampa. Prove corrette dall'autore. Disponibile online dal Friday 24 August 2018

Abstract

OBJECTIVE

To test whether a novel visuospatial testing platform improves trainee ability to convert two-dimensional to three-dimensional (3D) space.

METHODS

Medical students were recruited from Baylor College of Medicine and McGovern Medical School (Houston, TX). We 3D reconstructed 3 partial nephrectomy cases using a novel, rapid, and highly accurate edge-detection algorithm. Patient-specific reconstructions were imported into the dV-Trainer (Mimics Technologies, Seattle, WA) as well as used to generate custom 3D printed physical models. Tumor location was altered digitally to generate 9 physical models for each case, 1 with the correct tumor location and 8 with sham locations. Subjects were randomized 1:1 into the dV-Trainer (intervention) and No-dV-Trainer (control) groups. Each subject completed the following steps: (1) visualization of computed-tomographic images, (2) visualization of the reconstructed kidney and tumor in the dV-Trainer (intervention group only), and (3) selection of the correct tumor location on the 3D printed models (primary outcome). Normalized distances from the correct tumor location were quantified and compared between groups.

RESULTS

A total of 100 subjects were randomized for this study. dV-Trainer use significantly improved subjects ability to localize tumor position (tumor localization score: 0.24 vs 0.38, P < .001). However, subjects in the No-dV-Trainer group more accurately assigned R.E.N.A.L. scores.

CONCLUSION

Even brief exposure to interactive patient-specific renal tumor models improves a novice's ability to localize tumor location. Virtual reality simulation prior to surgery could benefit trainees learning to localize renal masses for minimally invasive partial nephrectomy.

Il testo completo di questo articolo è disponibile in PDF.

Mappa


 Financial Disclosure: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number T32GM088129 as well as the loan of the dV-Trainer simulator platform from Mimics Technologies, Inc. (Seattle, WA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or Mimics Technologies.
 The authors declare no conflict of interest.


© 2018  Elsevier Ltd. Tutti i diritti riservati.
Aggiungere alla mia biblioteca Togliere dalla mia biblioteca Stampare
Esportazione

    Citazioni Export

  • File

  • Contenuto

Benvenuto su EM|consulte, il riferimento dei professionisti della salute.
L'accesso al testo integrale di questo articolo richiede un abbonamento.

Già abbonato a @@106933@@ rivista ?

@@150455@@ Voir plus

Il mio account


Dichiarazione CNIL

EM-CONSULTE.COM è registrato presso la CNIL, dichiarazione n. 1286925.

Ai sensi della legge n. 78-17 del 6 gennaio 1978 sull'informatica, sui file e sulle libertà, Lei puo' esercitare i diritti di opposizione (art.26 della legge), di accesso (art.34 a 38 Legge), e di rettifica (art.36 della legge) per i dati che La riguardano. Lei puo' cosi chiedere che siano rettificati, compeltati, chiariti, aggiornati o cancellati i suoi dati personali inesati, incompleti, equivoci, obsoleti o la cui raccolta o di uso o di conservazione sono vietati.
Le informazioni relative ai visitatori del nostro sito, compresa la loro identità, sono confidenziali.
Il responsabile del sito si impegna sull'onore a rispettare le condizioni legali di confidenzialità applicabili in Francia e a non divulgare tali informazioni a terzi.


Tutto il contenuto di questo sito: Copyright © 2025 Elsevier, i suoi licenziatari e contributori. Tutti i diritti sono riservati. Inclusi diritti per estrazione di testo e di dati, addestramento dell’intelligenza artificiale, e tecnologie simili. Per tutto il contenuto ‘open access’ sono applicati i termini della licenza Creative Commons.