Suscribirse

The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model - 27/12/12

Doi : 10.1016/j.jaci.2012.08.010 
Rob J.B. Klemans, MD a, , Dianne Otte, MD a, , Mirjam Knol, PhD b, c, Edward F. Knol, PhD a, Yolanda Meijer, MD d, e, Frits H.J. Gmelig-Meyling, PhD f, Carla A.F.M. Bruijnzeel-Koomen, MD, PhD a, André C. Knulst, MD, PhD a, Suzanne G.M.A. Pasmans, MD, PhD a, e
a Department of (Paediatric) Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands 
b Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands 
d Department of Paediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands 
f Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands 
c Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands 
e Center for Paediatric Allergology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands 

Corresponding author: Rob J. B. Klemans, MD, Department of Dermatology and Allergology, University Medical Center Utrecht (G02.124), PO Box 85.500, 3508 GA Utrecht, The Netherlands.

Abstract

Background

A diagnostic prediction model for peanut allergy in children was recently published, using 6 predictors: sex, age, history, skin prick test, peanut specific immunoglobulin E (sIgE), and total IgE minus peanut sIgE.

Objectives

To validate this model and update it by adding allergic rhinitis, atopic dermatitis, and sIgE to peanut components Ara h 1, 2, 3, and 8 as candidate predictors. To develop a new model based only on sIgE to peanut components.

Methods

Validation was performed by testing discrimination (diagnostic value) with an area under the receiver operating characteristic curve and calibration (agreement between predicted and observed frequencies of peanut allergy) with the Hosmer-Lemeshow test and a calibration plot. The performance of the (updated) models was similarly analyzed.

Results

Validation of the model in 100 patients showed good discrimination (88%) but poor calibration (P < .001). In the updating process, age, history, and additional candidate predictors did not significantly increase discrimination, being 94%, and leaving only 4 predictors of the original model: sex, skin prick test, peanut sIgE, and total IgE minus sIgE. When building a model with sIgE to peanut components, Ara h 2 was the only predictor, with a discriminative ability of 90%. Cutoff values with 100% positive and negative predictive values could be calculated for both the updated model and sIgE to Ara h 2. In this way, the outcome of the food challenge could be predicted with 100% accuracy in 59% (updated model) and 50% (Ara h 2) of the patients.

Conclusions

Discrimination of the validated model was good; however, calibration was poor. The discriminative ability of Ara h 2 was almost comparable to that of the updated model, containing 4 predictors. With both models, the need for peanut challenges could be reduced by at least 50%.

El texto completo de este artículo está disponible en PDF.

Key words : Diagnostics, peanut allergy, food challenge, prediction model, validation, Ara h 2

Abbreviations used : AUC, DBPCFC, NPV, PPV, sIgE, SPT


Esquema


 This study was partially funded by an unrestricted grant from Thermo Fisher Scientific, Sweden and The Netherlands.
 Disclosure of potential conflict of interest: A. Knulst has received research support from Thermo Fisher Scientific, Netherlands/Sweden. The rest of the authors declare that they have no relevant conflicts of interest.


© 2012  American Academy of Allergy, Asthma & Immunology. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 131 - N° 1

P. 157-163 - janvier 2013 Regresar al número
Artículo precedente Artículo precedente
  • Parent report of physician diagnosis in pediatric food allergy
  • Ruchi S. Gupta, Elizabeth E. Springston, Bridget Smith, Jacqueline Pongracic, Jane L. Holl, Manoj R. Warrier
| Artículo siguiente Artículo siguiente
  • Kiwifruit allergy across Europe: Clinical manifestation and IgE recognition patterns to kiwifruit allergens
  • Thuy-My Le, Merima Bublin, Heimo Breiteneder, Montserrat Fernández-Rivas, Riccardo Asero, Barbara Ballmer-Weber, Laura Barreales, Peter Bures, Simona Belohlavkova, Frédéric de Blay, Michael Clausen, Ruta Dubakiene, David Gislason, Els van Hoffen, Monika Jedrzejczak-Czechowicz, Marek L. Kowalski, Tanya Kralimarkova, Jonas Lidholm, Åsa Marknell DeWitt, Clare E.N. Mills, Nikolaos G. Papadopoulos, Todor Popov, Ashok Purohit, Ronald van Ree, Suranjith Seneviratne, Athanasios Sinaniotis, Colin Summers, Sonia Vázquez-Cortés, Stefan Vieths, Lothar Vogel, Karin Hoffmann-Sommergruber, André C. Knulst

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.