Suscribirse

A structured clinical model for predicting the probability of pulmonary embolism - 28/08/11

Doi : 10.1016/S0002-9343(02)01478-X 
Massimo Miniati, MD, PhD a, , Simonetta Monti, MD, PhD a, Matteo Bottai, ScD b
a Istituto di Fisiologia Clinica (MM, SM), Consiglio Nazionale delle Ricerche, Pisa, Italy 
b Istituto di Scienze e Tecnologie dell’Informazione (MB), Consiglio Nazionale delle Ricerche, Pisa, Italy 

*Requests for reprints should be addressed to Massimo Miniati, MD, PhD, Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract

Purpose

To develop a structured model to predict the clinical probability of pulmonary embolism.

Methods

We studied 1100 consecutive patients with suspected pulmonary embolism in whom a definite diagnosis had been established. We used logistic regression analysis to estimate the probability of pulmonary embolism based on patients’ clinical characteristics; the probability was categorized as low (≤10%), intermediate (>10%, ≤50%), moderately high (>50%, ≤90%), or high (>90%).

Results

The overall prevalence of pulmonary embolism was 40% (n = 440). Ten characteristics were associated with an increased risk of pulmonary embolism (male sex, older age, history of thrombophlebitis, sudden-onset dyspnea, chest pain, hemoptysis, electrocardiographic signs of acute right ventricular overload, radiographic signs of oligemia, amputation of the hilar artery, and pulmonary consolidation suggestive of infarction), and five were associated with a decreased risk (prior cardiovascular or pulmonary disease, high fever, pulmonary consolidation other than infarction, and pulmonary edema on the chest radiograph). With this model, 432 patients (39%) were rated a low probability, of whom 19 (4%) had pulmonary embolism; 283 (26%) were rated an intermediate probability, of whom 62 (22%) had pulmonary embolism; 72 (7%) were rated a moderately high probability, of whom 53 (74%) had pulmonary embolism; and 313 (28%) were rated a high probability, of whom 306 (98%) had pulmonary embolism.

Conclusion

This prediction model may be useful for estimating the probability of pulmonary embolism before obtaining definitive test results.

El texto completo de este artículo está disponible en PDF.

Esquema


 This work was supported in part by the Ministry of Health and the Ministry of University and Scientific and Technological Research of Italy.


© 2003  Excerpta Medica Inc. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 114 - N° 3

P. 173-179 - février 2003 Regresar al número
Artículo siguiente Artículo siguiente
  • Coagulation and activation of inflammatory pathways in the development of functional decline and mortality in the elderly
  • Harvey Jay Cohen, Tamara Harris, Carl F Pieper

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.