Suscribirse

Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study - 06/04/25

Doi : 10.1016/j.jormas.2025.102324 
Bin-Zhang Wu a, b, 1, Lei-Hao Hu a, c, 1, Si-Fan Cao d, Ji Tan d, Nian-Zha Danzeng e, Jing-Fan Fan d, , Wen-Bo Zhang a, , Xin Peng a
a Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
b First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
c Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China 
d Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, PR China 
e Department of stomatology, People's Hospital of Tibet Autonomous Region, Tibet Autonomous Region, PR China 

Corresponding author at: Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, PR China.Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyNo.22, Zhongguancun South AvenueHaidian DistrictBeijingPR China⁎⁎Corresponding author at: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, No.5, Zhongguancun South Avenue, Haidian District, Beijing, PR China.Beijing Engineering Research Center of Mixed Reality and Advanced DisplaySchool of Optics and PhotonicsBeijing Institute of TechnologyNo.5, Zhongguancun South Avenue, Haidian DistrictBeijingPR China
En prensa. Pruebas corregidas por el autor. Disponible en línea desde el Sunday 06 April 2025
This article has been published in an issue click here to access

Abstract

Purpose

This pilot study aims to evaluate the feasibility and accuracy of deep learning-based multimodal computed tomography/magnetic resonance imaging (CT/MRI) fusion and segmentation strategies for the surgical planning of oral and maxillofacial tumors.

Materials and methods

This study enrolled 30 oral and maxillofacial tumor patients visiting our department between 2016 and 2022. All patients underwent enhanced CT and MRI scanning of the oral and maxillofacial region. Furthermore, three fusion models (Elastix, ANTs, and NiftyReg) and three segmentation models (nnU-Net, 3D UX-Net, and U-Net) were combined to generate nine hybrid deep learning models that were trained. The performance of each model was evaluated via the Fusion Index (FI), Dice similarity coefficient (Dice), 95th-percentile Hausdorff distance (HD95), mean surface distance (MSD), precision, and recall analysis.

Results

All three image fusion models (Elastix, ANTs, and NiftyReg) demonstrated satisfactory accuracy, with Elastix exhibiting the best performance. Among the tested segmentation models, the highest degree of accuracy for segmenting the maxilla and mandible was achieved by combining NiftyReg and nnU-Net. Furthermore, the highest overall accuracy of the nine hybrid models was observed with the Elastix and nnU-Net combination, which yielded a Dice coefficient of 0.89 for tumor segmentation.

Conclusion

In this study, deep learning models capable of automatic multimodal CT/MRI image fusion and segmentation of oral and maxillofacial tumors were successfully trained with a high degree of accuracy. The results demonstrated the feasibility of using deep learning-based image fusion and segmentation to establish a basis for virtual surgical planning.

El texto completo de este artículo está disponible en PDF.

Keywords : Deep learning, Multimodal image fusion, Image segmentation, Oral and maxillofacial tumors, Surgical planning


Esquema


© 2025  Elsevier Masson SAS. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.