Suscribirse

Clinically Guided Adaptive Machine Learning Update Strategies for Predicting Severe COVID-19 Outcomes - 10/02/25

Doi : 10.1016/j.amjmed.2024.10.011 
Mehmet Ulvi Saygi Ayvaci, PhD a, Varghese S. Jacobi, PhD a, Young Ryu, PhD a, Saikrishna Pannaga Srikar Gundreddy b, Bekir Tanriover, MD, MPH, MBA, FAST c,
a Information Systems, Naveen Jindal School of Management, The University of Texas at Dallas, Dallas 
b Computer Science, Eric Johnson School of Engineering, The University of Texas at Dallas, Richardson 
c Division of Nephrology, College of Medicine, The University of Arizona, Tucson 

Requests for reprints should be addressed to Bekir Tanriover, MD, MPH, MBA, FAST, Division of Nephrology, College of Medicine, The University of Arizona, 1501 N Campbell Avenue PO Box 245022, Tucson, AZ 85724.Division of NephrologyCollege of MedicineThe University of Arizona1501 N Campbell Avenue PO Box 245022TucsonAZ85724

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background

Machine learning algorithms are essential for predicting severe outcomes during public health crises like COVID-19. However, the dynamic nature of diseases requires continual evaluation and updating of these algorithms. This study aims to compare three update strategies for predicting severe COVID-19 outcomes postdiagnosis: “naive” (a single initial model), “frequent” (periodic retraining), and “context-driven” (retraining informed by clinical insights). The goal is to determine the most effective timing and approach for adapting algorithms to evolving disease dynamics and emerging data.

Methods

A dataset of 1.11 million COVID-19 patients from diverse U.S. regions was used to develop and validate an XGBoost algorithm for predicting severe outcomes upon diagnosis. Data included patient demographics, vital signs, comorbidities, and immunity-related factors (prior infection and vaccination status) from January 2007 to November 2021. The study analyzed the performance of the three update strategies from March 2020 to November 2021.

Results

Predictive features changed over the pandemic, with comorbidities and vitals being significant initially, and geography, demographics, and immunity-related variables gaining importance later. The “naive” strategy had an average area under the curve (AUC) of 0.77, the “frequent” strategy maintained stability with an average AUC of 0.81, and the “context-driven” strategy averaged an AUC of 0.80, outperforming the “naive” strategy and aligning closely with the “frequent” strategy.

Conclusions

A context-driven approach, guided by clinical insights, can enhance predictive performance and offer cost-effective solutions for dynamic public health challenges. These findings have significant implications for efficiently managing healthcare resources during evolving disease outbreaks.

El texto completo de este artículo está disponible en PDF.

Keywords : COVID-19, Disease evolution, Machine learning


Esquema


 Statement: During the preparation of this work the author(s) used Grammarly in order to optimize the manuscript grammatically and to enhance readability. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
 Funding: None.
 Conflict of Interest: The authors declare no conflict of interest related to the topic.
 Authorship: MUSA: Writing—original draft, validation, supervision, resources, methodology, formal analysis, data curation, conceptualization; VSJ: Writing—original draft, resources, project administration; YR: Writing—original draft; SPSG: Writing—original draft, visualization, validation, formal analysis, data curation; BT: Writing—original draft, supervision, methodology, conceptualization. All authors have participated in the preparation of the manuscript. All authors read and approved the manuscript, contributed significantly to the work.


© 2024  Elsevier Inc. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 138 - N° 2

P. 228 - février 2025 Regresar al número
Artículo precedente Artículo precedente
  • Demographical and Regional Trends of HIV-Related Mortality Among Young Adults in the United States From 1999 to 2020
  • Kaneez Fatima, Amna Siddiqui, Ghulam Mustafa Ali Malik, Areeba Farooqui, Zuha Rasul, Faba Hanif, Bisma Mansoor, Fatima Mansoor, Mohammad Bilal Abbasi, Khizar Rehan, Rahima Azam, Aaliyan Wajid, Atida Awan, Ishaque Hameed
| Artículo siguiente Artículo siguiente
  • Febuxostat Leads to Better Cardiovascular Outcomes Compared to Allopurinol in Patients With Advanced Chronic Kidney Disease: A Population-Based Cohort Study
  • Ming-Hsien Tsai, Yun-Yi Chen, Hung-Hsiang Liou, Jing-Tong Wang, Yu-Wei Fang

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.