Algorithme basé sur l’apprentissage profond pour la détection automatique des luxations périlunaires sur les radiographies frontales du poignet - 13/12/24
Abstract |
This study proposes a Deep Learning algorithm to automatically detect perilunate dislocations in wrist frontal radiographs.
A total of 374 annotated radiographs, comprising 345 normal and 29 pathological ones, were utilized to train, validate, and test two YOLOv8 deep neural models. The first model is responsible for detecting the carpal region, and the second for segmenting a region between Gilula's 2nd and 3rd arcs. The output of the segmentation model, trained multiple times with varying random initial parameter values and augmentations, is then given a probability to be normal or pathological through ensemble averaging.
On the considered dataset, the proposed algorithm achieves an overall F1-score of 0.880.
The F1-score reaches 0.928 on the normal subgroup with a precision of 1.0, and 0.833 on the pathological subgroup with a recall (or sensitivity) of 1.0, demonstrating that the diagnosis of perilunate dislocations can be improved through automatic analysis of frontal radiographs.
In this paper, we have introduced a DL algorithm designed to automatically detect PLDs in frontal wrist radiographs.
El texto completo de este artículo está disponible en PDF.Esquema
Vol 43 - N° 6
Artículo 101842- décembre 2024 Regresar al númeroBienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.
¿Ya suscrito a @@106933@@ revista ?