Design of a computational intelligence system for detection of multiple sclerosis with visual evoked potentials - 11/12/24

Doi : 10.1016/j.neuri.2024.100177 
Moussa Mohsenpourian a, Amir Abolfazl Suratgar a, , Heidar Ali Talebi b, Mahsa Arzani c, Abdorreza Naser Moghadasi c, d, Seyed Matin Malakouti a, Mohammad Bagher Menhaj a
a Distributed and Intelligent Optimization Research Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran 
b Real-time Robotics Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., Tehran, Iran 
c Department of Neurology, Sian Hospital, Tehran University of Medical Sciences, Tehran, Iran 
d MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

In this study, a new approach for modification of membership functions of a fuzzy inference system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization algorithm to modify parameters associated with membership functions of both inputs and outputs of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the network is minimized.

This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients and 11 HC's. A feature extraction routine was performed on the VEP signals, and later substantial features were selected in an optimized feature subset selection scheme employing Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further information regarding clinical value of many previously unused VEP features as an aide for making the diagnosis. The newly designed computational intelligence system is shown to outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was able to distinguish MS patients from HC's with an overall accuracy of 90%.

El texto completo de este artículo está disponible en PDF.

Keywords : Multiple sclerosis, Visual evoked potentials, Binary classification, Fuzzy inference system, Krill herd optimization


Esquema


© 2024  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 1

Artículo 100177- mars 2025 Regresar al número
Artículo siguiente Artículo siguiente
  • KL-FedDis: A federated learning approach with distribution information sharing using Kullback-Leibler divergence for non-IID data
  • Md. Rahad, Ruhan Shabab, Mohd. Sultan Ahammad, Md. Mahfuz Reza, Amit Karmaker, Md. Abir Hossain

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2024 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.