Suscribirse

Risk prediction of kalaemia disturbance and acute kidney injury after total knee arthroplasty: use of a machine learning algorithm - 17/08/24

Doi : 10.1016/j.otsr.2024.103958 
Pierre Tran a, Siam Knecht b, Lyna Tamine a, Nicolas Faure a, Jean-Christophe Orban c, Nicolas Bronsard a, Jean-François Gonzalez a, Grégoire Micicoi a,
a Institut Universitaire Locomoteur et du Sport (IULS), Hôpital Pasteur 2, CHU de Nice, 30 voie Romaine, 06000 Nice, France 
b Aix-Marseille Université, CNRS, EFS, ADES, 13007 Marseille, France 
c Département d’Anesthésie Réanimation et Médecine Péri-Opératoire, Hôpital Privé Cannes Oxford, 06400 Cannes, France 

Corresponding author.
En prensa. Pruebas corregidas por el autor. Disponible en línea desde el Saturday 17 August 2024

Abstract

Introduction

Total knee arthroplasty (TKA) is a procedure associated with risks of electrolyte and kidney function disorders, which are rare but can lead to serious complications if not correctly identified. A routine check-up is very often carried out to assess the seric ionogram and kidney function after TKA, that rarely requires clinical intervention in the event of a disturbance. The aim of this study was to identify perioperative variables that would lead to the creation of a machine learning model predicting the risk of kalaemia disorders and/or acute kidney injury after total knee arthroplasty.

Hypothesis

A predictive model could be constructed to estimate the risk of kalaemia disorders and/or acute kidney injury after total knee arthroplasty.

Material and methods

This single-centre retrospective study included 774 total knee arthroplasties (TKA) operated on between January 2020 and March 2023. Twenty-five preoperative variables were incorporated into the machine learning model and filtered by a first algorithm. The most predictive variables selected were used to construct a second algorithm to define the overall risk model for postoperative kalaemia and/or acute kidney injury (K+ A). Two groups were formed of K+ A and non-K+ A patients after TKA. A univariate analysis was performed and the performance of the machine learning model was assessed by the area under the curve representing the sensitivity of the model as a function of 1 - specificity.

Results

Of the 774 patients included who had undergone TKA surgery, 46 patients (5.9%) had a postoperative kalaemia disorder requiring correction and 13 patients (1.7%) had acute kidney injury, of whom 5 patients (0.6%) received vascular filling. Eight variables were included in the machine learning predictive model, including body mass index, age, presence of diabetes, operative time, lowest mean arterial pressure, Charlson score, smoking and preoperative glomerular filtration rate.

Overall performance was good with an area under the curve of 0.979 [CI95% 0.938–1.02], sensitivity was 90.3% [CI95% 86.2–94.4] and specificity 89.7% [CI95% 85.5–93.8]. The tool developed to assess the risk of impaired kalaemia and/or acute kidney injury after TKA is available on arthrorisk.com.

Conclusion

The risk of kalaemia disturbance and postoperative acute kidney injury after total knee arthroplasty could be predicted by a model that identifies low-risk and high-risk patients based on eight pre- and intraoperative variables. This machine learning tool is available on a web platform accessible for everyone, easy to use and has a high predictive performance. The aim of the model was to better identify and anticipate the complications of dyskalaemia and postoperative acute kidney injury in high-risk patients. Further prospective multicentre series are needed to assess the value of a systematic postoperative biochemical work-up in the absence of risk predicted by the model.

Level of evidence

IV; retrospective study of case series.

El texto completo de este artículo está disponible en PDF.

Keywords : Arthroplasty, Acute kidney injury, Knee, Machine learning, Potassium, Predictive model


Esquema


© 2024  Elsevier Masson SAS. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.