Suscribirse

Evaluation of washout using subtraction MRI for the diagnosis of hepatocellular carcinoma in cirrhotic patients with spontaneously T1-hyperintense nodules - 26/08/23

Doi : 10.1016/j.diii.2023.04.005 
Jocelyn Bizeul a, , Maxime Ronot b, Marine Roux c, Roberto Cannella b, d, e, Jérôme Lebigot a, c, Christophe Aubé a, c, Anita Paisant a, c
a Department of Radiology, Angers University Hospital (Centre Hospitalier Universitaire d'Angers), 49000 Angers, France 
b Université Paris Cité, INSERM U1149 “Center for Inflammation Research” (Centre de Recherche sur l'Inflammation), CRI, Paris, & Department of Radiology, Hôpital Beaujon, AP-HP Nord, 92110 Clichy, France 
c HIFIH Laboratory, UPRES 3859, SFR 4208, University of Angers, 49045 Angers, France 
d Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, 90127 Palermo, Italy 
e Department of Health Promotion Sciences, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

The use of portal or delayed phase subtraction MR images using extracellular agent leads to a drop in specificity using LI-RADS v2018 (67% vs. 33%; P = 0.553) and EASL v2018 (72% vs. 39%; P = 0.553) criteria.
The use of portal venous phase, delayed/transitional phase or hepatobiliary phase subtraction MR images with hepatobiliary agent leads to a drop in specificity using LI-RADS v2018, EASL v2018, KLCA-NCC v2018, and APASL v2017 criteria.
The use of portal venous phase or delayed/transitional phase subtraction MR images increases the detection of capsule in both hepatocellular carcinoma and non-hepatocellular carcinoma nodules.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to assess the value of subtraction imaging on post-arterial phase images (i.e., portal venous, delayed/transitional and hepatobiliary phases) for the non-invasive diagnosis of hepatocellular carcinoma (HCC) in spontaneously hyperintense nodules on T1-weighted imaging in patients with cirrhosis.

Materials and methods

Forty-five patients with a total 55 hepatic nodules that were spontaneously hyperintense on T1-weighted images were initially retrieved. All patients underwent MRI examination of the liver using extracellular agent. Each nodule was assessed for sensitivity and specificity using LI-RADS (Liver Imaging Reporting and Data System) during two reading sessions performed first without then with subtraction images on post-arterial phase images. The final standard of reference was defined by a step-by-step algorithm previously published combining histology, typical imaging, alfa fetoprotein and follow-up.

Results

Forty-six nodules (26 HCC) in 39 patients with cirrhosis were analyzed. Using LI-RADS, the sensitivity and specificity for the diagnosis of HCC were 64% (95% CI: 41–83) and 67% (95% CI: 41–87) without subtraction; and 73% (95% CI: 50–89) (P > 0.999) and 33% (95% CI: 13–59) (P = 0.553) on subtraction imaging using extracellular contrast agent. Fifty-five percent (22/40) of nodules displayed a washout without subtraction and 70% (28/40) did so on subtraction imaging obtained with extracellular contrast agent. Twenty nodules out of 40 (50%) were classified LI-RADS 5 without subtraction, and 28 out of 40 nodules (70%) with subtraction.

Conclusion

The results of this study suggest that the use of subtraction imaging on post-arterial phase images (i.e., PVP, DP/TP and HBP) is not relevant for the non-invasive diagnosis of HCC for spontaneously hyperintense nodules on T1-weighted images in patients with liver cirrhosis.

El texto completo de este artículo está disponible en PDF.

Keywords : Diagnostic imaging, Hepatocellular carcinoma, Liver neoplasm, Magnetic resonance imaging, Subtraction imaging

Abbreviations : AP, APASL, APHE, CI, DP, EASL, ECA, HBA, HBP, HCC, KLCA-NCC, LI-RADS, PVP, SD, TP


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 104 - N° 9

P. 427-434 - septembre 2023 Regresar al número
Artículo precedente Artículo precedente
  • Value of aortic volumes assessed by automated segmentation of 3D MRI data in patients with thoracic aortic dilatation: A case-control study
  • Thomas Dietenbeck, Kevin Bouaou, Sophia Houriez-Gombaud-Saintonge, Jia Guo, Umit Gencer, Etienne Charpentier, Alain Giron, Alain De Cesare, Vincent Nguyen, Antonio Gallo, Samia Boussouar, Nicoletta Pasi, Gilles Soulat, Alban Redheuil, Elie Mousseaux, Nadjia Kachenoura
| Artículo siguiente Artículo siguiente
  • A primer on artificial intelligence in pancreatic imaging
  • Taha M. Ahmed, Satomi Kawamoto, Ralph H. Hruban, Elliot K. Fishman, Philippe Soyer, Linda C. Chu

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.