Suscribirse

A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging - 23/06/23

Doi : 10.1016/j.diii.2023.03.008 
Adrien Bordner a, b, , Théodore Aouad c, Clementina Lopez Medina g, Sisi Yang b, d, Anna Molto e, f, Hugues Talbot c, Maxime Dougados d, e, f, Antoine Feydy b, d, f
a Sorbonne Médecine Université, 75013 Paris, France 
b Department of Radiology, Hôpital Cochin, APHP, 75014 Paris, France 
c CentraleSupélec, Université Paris-Saclay, Inria, 91190 Gif-sur-Yvette, France 
d Université Paris Cité, 75006 Paris, France 
e Department of Rheumatology, Hôpital Cochin, APHP, 75014 Paris, France 
f INSERM U1153, Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, 75004 Paris, France 
g Department of Rheumatology, Reina Sofia University Hospital, IMIBIC, University of Cordoba, 14004 Cordoba, Spain 

Corresponding author:

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

An artificial intelligence model was developed to detect sacroiliac bone marrow edema on MRI in patients with chronic inflammatory back pain.
This artificial intelligence model determines the status of sacroiliac joint according to the assessment of spondyloarthritis international society (ASAS) classification, yielding 100% specificity but 56% sensitivity on external evaluation dataset.
A good agreement between this artificial intelligence model and the majority decision of expert readers is obtained on the external evaluation dataset for the diagnosis of active sacroiliitis according to ASAS classification.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to develop and evaluate a deep learning model to detect bone marrow edema (BME) in sacroiliac joints and predict the MRI Assessment of SpondyloArthritis International Society (ASAS) definition of active sacroiliitis in patients with chronic inflammatory back pain.

Materials and methods

MRI examinations of patients from the French prospective multicenter DESIR cohort (DEvenir des Spondyloarthropathies Indifférenciées Récentes) were used for training, validation and testing. Patients with inflammatory back pain lasting three months to three years were recruited. Test datasets were from MRI follow-ups at five years and ten years. The model was evaluated using an external test dataset from the ASAS cohort. A neuronal network classifier (mask-RCNN) was trained and evaluated for sacroiliac joints detection and BME classification. Diagnostic capabilities of the model to predict ASAS MRI active sacroiliitis (BME in at least two half-slices) were assessed using Matthews correlation coefficient (MCC), sensitivity, specificity, accuracy and AUC. The gold standard was experts' majority decision.

Results

A total of 256 patients with 362 MRI examinations from the DESIR cohort were included, with 27% meeting the ASAS definition for experts. A total of 178 MRI examinations were used for the training set, 25 for the validation set and 159 for the evaluation set. MCCs for DESIR baseline, 5-years, and 10-years follow-up were 0.90 (n = 53), 0.64 (n = 70), and 0.61 (n = 36), respectively. AUCs for predicting ASAS MRI were 0.98 (95% CI: 0.93–1), 0.90 (95% CI: 0.79–1), and 0.80 (95% CI: 0.62–1), respectively. The ASAS external validation cohort included 47 patients (mean age 36 ± 10 [SD] years; women, 51%) with 19% meeting the ASAS definition. MCC was 0.62, sensitivity 56% (95% CI: 42–70), specificity 100% (95% CI: 100–100) and AUC 0.76 (95% CI: 0.57–0.95).

Conclusion

The deep learning model achieves performance close to those of experts for BME detection in sacroiliac joints and determination of active sacroiliitis according to the ASAS definition.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence, Deep-learning, Magnetic resonance imaging, Sacroiliac joint, Spondyloarthritis

Abbreviations : AI, ASAS, BME, CI, CLAHE, DESIR, GESPIC, MCC, OMERACT, R-CNN, ROC, ROI, SpA, STIR


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 104 - N° 7-8

P. 373-383 - juillet 2023 Regresar al número
Artículo precedente Artículo precedente
  • Middle meningeal artery embolization using cone-beam computed tomography augmented guidance in patients with cancer
  • Omar Dzaye, Akshaar Brahmbhatt, Aaron Abajian, Amgad M. Moussa, Kenny K.H. Yu, Nelson S. Moss, William C. Newman, Eric Lis, Viviane Tabar, Francois H. Cornelis
| Artículo siguiente Artículo siguiente
  • Catheter-directed thrombolysis using recombinant tissue plasminogen activator for the treatment of isolated mesenteric artery dissection with acute mesenteric ischemia
  • Lorenzo Garzelli, Luisa Paulatto, Olivier Corcos, Yves Castier, Maxime Ronot, Iannis Ben Abdallah

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.