Suscribirse

Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction - 30/03/23

Doi : 10.1016/j.diii.2022.11.002 
Saif Afat a, , Judith Herrmann a, Haidara Almansour a, Thomas Benkert b, Elisabeth Weiland b, Thomas Hölldobler a, Konstantin Nikolaou a, c, Sebastian Gassenmaier a
a Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, Tuebingen 72076, Germany 
b MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, Erlangen 91052, Germany 
c Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tuebingen, Germany 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

Deep learning image reconstruction of diffusion-weighted liver imaging including acquisition time reduction of more than 40% is feasible without loss of image quality.
Deep learning image reconstruction of diffusion-weighed liver imaging provides significant reduction of the noise (P < 0.001).
Deep learning image reconstruction of diffusion-weighted liver imaging provides significantly greater signal intensities on ADC map for the liver, spleen, and erector spinae muscles.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to investigate the impact of deep learning accelerated diffusion-weighted imaging (DWIDL) in 1.5-T liver MRI on image quality, sharpness, and diagnostic confidence.

Materials and methods

One-hundred patients who underwent liver MRI at 1.5-T including DWI with two different b-values (50 and 800 s/mm²) between February and April 2022 were retrospectively included. There were 54 men and 46 women, with a mean age of 59 ± 14 (SD) years (range: 21–88 years). The single average raw data were retrospectively processed using a deep learning (DL) image reconstruction algorithm leading to a simulated acquisition time of 1 min 28 s for DWIDL as compared to 2 min 31 s for standard DWI (DWIStd) via reduction of signal averages. All DWI datasets were reviewed by four radiologists using a Likert scale ranging from 1–4 using the following criteria: noise level, extent of artifacts, sharpness, overall image quality, and diagnostic confidence. Furthermore, quantitative assessment of noise and signal-to-noise ratio (SNR) was performed via regions of interest.

Results

No significant differences were found regarding artifacts and overall image quality (P > 0.05). Noise measurements for the spleen, liver, and erector spinae muscles revealed significantly lower noise for DWIDL versus DWIStd (P < 0.001). SNR measurements in the above-mentioned tissues also showed significantly superior results for DWIDL versus DWIStd for b = 50 s/mm² and ADC maps (all P < 0.001). For b = 800 s/mm², significantly superior results were found for the spleen, right hemiliver, and erector spinae muscles.

Conclusions

DL image reconstruction of liver DWI at 1.5-T is feasible including significant reduction of acquisition time without compromised image quality.

El texto completo de este artículo está disponible en PDF.

Keywords : Deep learning, Diffusion-weighted imaging, Image reconstruction, Liver, Magnetic resonance imaging, Signal-to-noise ratio

Abbreviations : ADC, DL, DLR, DWI, DWIStd, DWIDL, GRE, MRI, PI, ROI, SD, SI, SMS, SNR, TA, TSE


Esquema


© 2022  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 104 - N° 4

P. 178-184 - avril 2023 Regresar al número
Artículo precedente Artículo precedente
  • Spectral CT imaging: Technical principles of dual-energy CT and multi-energy photon-counting CT
  • Joël Greffier, Nicolas Villani, Didier Defez, Djamel Dabli, Salim Si-Mohamed
| Artículo siguiente Artículo siguiente
  • Lung shunt fraction calculations before Y-90 transarterial radioembolization: Comparison of accuracy and clinical significance of planar scintigraphy and SPECT/CT
  • Shamar Young, Siobhan Flanagan, Donna D'Souza, Soorya Todatry, Ranjan Ragulojan, Tina Sanghvi, Jafar Golzarian

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.