Machine learning in lung transplantation: Where are we? - 08/11/22
Abstract |
Lung transplantation has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.
El texto completo de este artículo está disponible en PDF.Keywords : Machine learning, Artificial intelligence, Lung transplantation, Imaging, Pathology, Random forest
Esquema
Vol 51 - N° 4
Artículo 104140- décembre 2022 Regresar al númeroBienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.
¿Ya suscrito a @@106933@@ revista ?