Suscribirse

Early reduction of estimated Glomerular Filtration Rate (eGFR) predicts poor outcome in acutely ill hospitalized COVID-19 patients firstly admitted to medical regular wards (eGFR-COV19 study) - 31/08/22

Doi : 10.1016/j.biopha.2022.113454 
Francesco Cei a, , 1 , Ludia Chiarugi a, Simona Brancati a, Maria Silvia Montini a, Silvia Dolenti a, Daniele Di Stefano a, Salvatore Beatrice a, Irene Sellerio a, Valentina Messiniti a, Marco Maria Gucci a, Giulia Vannini a, Rinaldo Lavecchia a, Elisa Cioni b, Chiara Mattaliano b, Giulia Pelagalli b, Grazia Panigada c, Emanuele Murgo d, Gianluigi Mazzoccoli d, , 1 , Giancarlo Landini e, Roberto Tarquini a
a Division of Internal Medicine I, San Giuseppe Hospital, Empoli 50053, Italy 
b Division of Internal Medicine II, San Giuseppe Hospital, Empoli 50053, Italy 
c Division of Internal Medicine, SS. Cosma e Damiano Hospital, Pescia 51017, Italy 
d Division of Internal Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, 71013, Italy 
e Division of Internal Medicine, Santa Maria Nuova Hospital, Firenze 50100, Italy 

Corresponding authors.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background

Analysis of autopsy tissues obtained from patients who died from COVID-19 showed kidney tropism for SARS-COV-2, with COVID-19-related renal dysfunction representing an overlooked problem even in patients lacking previous history of chronic kidney disease. This study aimed to corroborate in a substantial sample of consecutive acutely ill COVID-19 hospitalized patients the efficacy of estimated GFR (eGFR), assessed at hospital admission, to identify acute renal function derangement and the predictive role of its association with in-hospital death and need for mechanical ventilation and admission to intensive care unit (ICU).

Methods

We retrospectively analyzed charts of 764 patients firstly admitted to regular medical wards (Division of Internal Medicine) for symptomatic COVID-19 between March 6th and May 30th, 2020 and between October 1st, 2020 and March 15th, 2021. eGFR values were calculated with the 2021 CKD-EPI formula and assessed at hospital admission and discharge. Baseline creatinine and GFR values were assessed by chart review of patients’ medical records from hospital admittance data in the previous year. The primary outcome was in-hospital mortality, while ARDS development and need for non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV) were the secondary outcomes.

Results

SARS-COV-2 infection was diagnosed in 764 patients admitted with COVID-19 symptoms. A total of 682 patients (age range 23–100 years) were considered for statistical analysis, 310 needed mechanical ventilation and 137 died. An eGFR value <60 mL/min/1.73 m2 was found in 208 patients, 181 met KDIGO AKI criteria; eGFR values at hospital admission were significantly lower with respect to both hospital discharge and baseline values (p < 0.001). In multivariate analysis, an eGFR value <60 mL/min/1.73 m2 was significantly associated with in-hospital mortality (OR 2.6, 1.7–4.8, p = 0.003); no association was found with both ARDS and need for mechanical ventilation. eGFR was non-inferior to both IL-6 serum levels and CALL Score in predicting in-hospital death (AUC 0.71, 0.68–0.74, p = 0.55).

Conclusions

eGFR calculated at hospital admission correlated well with COVID-19-related kidney injury and eGFR values < 60 mL/min/1,73 m2 were independently associated with in-hospital mortality, but not with both ARDS or need for mechanical ventilation.

El texto completo de este artículo está disponible en PDF.

Graphical Abstract




ga1

El texto completo de este artículo está disponible en PDF.

Highlights

SARS-COV-2 infection causes kidney damage in several COVID-19 patients.
A biomarker to disclose SARS-COV-2-related developing renal dysfunction is lacking.
GFR estimated (eGFR) at hospital admission reveals emerging kidney injury in COVID-19.
eGFR at admission validates early prediction of COVID-19 patients in-hospital death.

El texto completo de este artículo está disponible en PDF.

Keywords : SARS-COV-2, COVID-19, Glomerular filtration rate, Acute kidney injury, Prognosis


Esquema


© 2022  The Authors. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 153

Artículo 113454- septembre 2022 Regresar al número
Artículo precedente Artículo precedente
  • Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats
  • Di Zhang, Lei Li, Jun Li, YunLei Wei, Jian Tang, Xiaohua Man, Feng Liu
| Artículo siguiente Artículo siguiente
  • The chemical constituents and gastroprotective effects of Calanthe fimbriata Franch
  • Chunping Yu, Yang Gao, Xin Wang, Rui Zhang, Nana Liu, Zhenji Rong, Zhigang Wang, Jing Yang, Miaoqin Xie, Hailong Zhang, He Bao

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.