Suscribirse

Artificial Intelligence-Based Stethoscope for the Diagnosis of Aortic Stenosis - 26/08/22

Doi : 10.1016/j.amjmed.2022.04.032 
Tamer Ghanayim, MD a, 1, Lior Lupu, MD, MBA b, 1, Sivan Naveh, MD b, Noa Bachner-Hinenzon, PhD c, Doron Adler, PhD c, Salim Adawi, MD a, d, Shmuel Banai, MD b, Avinoam Shiran, MD a, d,
a Department of Cardiology, Lady Davis Carmel Medical Center, Haifa, Israel 
b Department of Cardiology, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Israel 
c Sanolla, Nesher, Israel 
d The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 

Requests for reprints should be addressed to Avinoam Shiran, MD, Department of Cardiology, Lady Davis Carmel Medical Center, 7 Michal Street, Haifa 3436212, Israel.Department of CardiologyLady Davis Carmel Medical Center7 Michal StreetHaifa3436212Israel

Abstract

Background

The diagnostic accuracy of the stethoscope is limited and highly dependent on clinical expertise. Our purpose was to develop an electronic stethoscope, based on artificial intelligence (AI) and infrasound, for the diagnosis of aortic stenosis (AS).

Methods

We used an electronic stethoscope (VoqX; Sanolla, Nesher, Israel) with subsonic capabilities and acoustic range of 3-2000 Hz. The study had 2 stages. In the first stage, using the VoqX, we recorded heart sounds from 100 patients referred for echocardiography (derivation group), 50 with moderate or severe AS and 50 without valvular disease. An AI-based supervised learning model was applied to the auscultation data from the first 100 patients used for training, to construct a diagnostic algorithm that was then tested on a validation group (50 other patients, 25 with AS and 25 without AS). In the second stage, conducted at a different medical center, we tested the device on 106 additional patients referred for echocardiography, which included patients with other valvular diseases.

Results

Using data collected at the aortic and pulmonic auscultation points from the derivation group, the AI-based algorithm identified moderate or severe AS with 86% sensitivity and 100% specificity. When applied to the validation group, the sensitivity was 84% and specificity 92%; and in the additional testing group, 90% and 84%, respectively. The sensitivity was 55% for mild, 76% for moderate, and 93% for severe AS.

Conclusion

Our initial findings show that an AI-based stethoscope with infrasound capabilities can accurately diagnose AS. AI-based electronic auscultation is a promising new tool for automatic screening and diagnosis of valvular heart disease.

El texto completo de este artículo está disponible en PDF.

Keywords : Algorithm, Aortic stenosis, Artificial intelligence, Infrasound, Stethoscope


Esquema


 Funding: The study was supported by Sanolla, Nesher, Israel.
 Conflicts of Interest: The study was supported by Sanolla. NBH and DA are employees of Sanolla. AS is a consultant for Sanolla and holds stock options in Sanolla. SB is the medical director of Sanolla.
 Authorship: All authors had access to the data and a role in writing the manuscript.


© 2022  Elsevier Inc. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 135 - N° 9

P. 1124-1133 - septembre 2022 Regresar al número
Artículo precedente Artículo precedente
  • Influence of Neighborhood Conditions on Recurrent Hospital Readmissions in Patients with Heart Failure: A Cohort Study
  • Mario Schootman, Brian C. Steinmeyer, Ling Chen, Robert M. Carney, Michael W. Rich, Kenneth E. Freedland
| Artículo siguiente Artículo siguiente
  • Management of Antiplatelet Therapy in Patients with Coronary Stents Undergoing Noncardiac Surgery
  • Nidhi Rohatgi, James L. Zehnder, Nathaniel R. Smilowitz

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.