Suscribirse

External Validation of a Laboratory Prediction Algorithm for the Reduction of Unnecessary Labs in the Critical Care Setting - 24/05/22

Doi : 10.1016/j.amjmed.2021.12.020 
Linda T. Li, MD a, , Tongtong Huang, MCS b, Elmer V. Bernstam, MD, MSE, MS b, c, Xiaoqian Jiang, PhD b
a Department of Pediatric Surgery; McGovern Medical School at The University of Texas Health Science Center at Houston 
b School of Biomedical Informatics, The University of Texas Health Science Center at Houston 
c Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston 

Requests for reprints should be addressed to Linda T. Li, MD, Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 5.250, Houston, TX 77030.Department of Pediatric SurgeryMcGovern Medical School at The University of Texas Health Science Center at Houston6431 Fannin St., MSB 5.250HoustonTX77030

Abstract

Background

Unnecessary laboratory tests contribute to iatrogenic harm and are a major source of waste in the health care system. We previously developed a machine learning algorithm to help clinicians identify unnecessary laboratory tests, but it has not been externally validated. In this study, we externally validate our machine learning algorithm.

Methods

To externally validate the machine learning algorithm that was originally trained on the Medical Information Mart for Intensive Care (MIMIC) III database, we tested the algorithm in a separate institution. We identified and abstracted data for all patients older than 18 years admitted to the intensive care unit at Memorial Hermann Hospital in Houston, Texas (MHH) from January 1, 2020 to November 13, 2020. Using the transfer learning style, we performed external validation of the machine learning algorithm.

Results

A total of 651 MHH patients were included. The model performed well in predicting abnormality (area under the curve [AUC] 0.98 for MIMIC III and 0.89 for MHH). The model performed similarly in predicting transitions from normal laboratory range to abnormal (AUC 0.71 for MIMIC III and 0.70 for MHH). The performance of the model in predicting the actual laboratory value was also similar in the MIMIC III (accuracy 0.41) and MHH data (0.45).

Conclusions

We externally validated the machine learning model and showed that the model performed similarly, supporting the generalizability to other settings. While this model demonstrated good performance for predicting abnormal labs and transitions, it does not perform well enough for prediction of laboratory values in most clinical applications.

El texto completo de este artículo está disponible en PDF.

Keywords : Critical care patients, External validation, Laboratory prediction, Machine learning, Predictive analytics


Esquema


 Funding: This work was supported in part by the National Center for Advancing Translational Sciences (NCATS) under awards U01TR002062, UL1TR000371 and U01TR002393; the National Institute of Aging (NIA) under award (R01AG066749), the Cancer Prevention and Research Institute of Texas (CPRIT), under award RP170668, RR180012 and the Reynolds and Reynolds Professorship in Clinical Informatics.
 Conflicts of Interest: The authors have no competing interests or financial relationships relevant to this article to disclose.
 Authorship: All authors had access to the data and a role in the manuscript writing. LTL: Conceptualization, project administration, roles/writing – original draft. TH: Data curation, formal analysis, validation; writing – review & editing. EVB: Conceptualization, resources, writing – review & editing. XJ: Conceptualization, formal analysis, methodology, supervision, writing – review & editing.


© 2022  Elsevier Inc. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 135 - N° 6

P. 769-774 - juin 2022 Regresar al número
Artículo precedente Artículo precedente
  • Added Prognostic Value of Plaque Burden to Computed Tomography Angiography and Myocardial Perfusion Imaging in Patients with Diabetes
  • Talal Alnabelsi, Ahmed Ibrahim Ahmed, Yushui Han, Mahmoud Al Rifai, Faisal Nabi, Miguel Cainzos-Achirica, Mouaz H. Al-Mallah
| Artículo siguiente Artículo siguiente
  • Relationship of Physical Examination Technique to Associated Clinical Skills: Results from a Direct Observation Assessment
  • Bennett W. Clark, Timothy Niessen, Ariella Apfel, Joyce Luckin, Yi Zhen Joan Lee, Sanjay V. Desai, Brian T. Garibaldi

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.