Impact of fine particulate matter (PM2.5) smoke during the 2019 / 2020 Australian bushfire disaster on emergency department patient presentations - 15/02/22

Doi : 10.1016/j.joclim.2022.100113 
Jamie Ranse a, b, , Matthew Luther c, Attila Hertelendy d, e, f, Richard Skinner g
a Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia 
b Department of Emergency Medicine, Gold Coast Health, Gold Coast, Queensland, Australia 
c Emergency Department, Calvary Public Hospital Bruce, Canberra, Australian Capital Territory, Australia 
d Department of Information Systems and Business Analytics, College of Business, Florida International University, United States 
e Fellowship in Disaster Medicine, Department of Emergency Medicine, Beth Israel Deaconess Medical Centre, Boston, Massachusetts, United States 
f Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts, United States 
g School of Pharmacy and Medical Sciences, Griffith Universtiy, Gold Coast, Queensland, Australia 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Aim

The aim of this paper was to describe the patient characteristics and outcomes from a metropolitan emergency department (ED) during the 2019/2020 ‘Black Summer Bushfires’ disaster in Australia and compare the patient characteristics and outcomes to a matched period from the same ED one year earlier.

Background

Years of drought, low relative humidity, high temperatures, and high forest fuel loads led to catastrophic fire conditions across Australia during 2019 and 2020. As a result; 33 people died, 3 billion animals and 24 to 40 million hectares were lost, and 3,000 homes were destroyed. The impact of wildfire smoke is emerging in the literature regarding an exacerbation of respiratory, cardiac and cardiovascular disease. However, the impact on Australian EDs is minimally reported in the literature.

Method

This retrospective cross-sectional cohort study used routinely collected data from the ED patient information system from one metropolitan Australian ED. Data were obtained for patient presentations during the 2019/2020 Black Summer Bushfire period and a matched period, 2018/2019, one year earlier. Daily mean air quality indicators (PM2.5, PM10) were obtained from the nearest air quality monitoring station. Data analysis included descriptive statistics, correlation coefficient and inferential statistics. Statistical significance was set at p ≤ 0.05.

Results

The 2019/2020 study period had a statistically significantly higher airborne particulate matter (PM2.5) when compared to the matched period (p=<0.001), with comparable presentations between the study periods. However, an increase in respiratory related presentations (p<0.001; χ2 = 34.31) was noted in the 2019/2020 period, with a positive correlation between daily increasing mean air quality (PM2.5, PM10) and increasing patient presentations with respiratory related illness (p<0.001). Proportionately, patient demographics; mode of arrival, triage category, length of stay and admissions did not differ between periods. However, there was an increase in the raw number of patients being admitted to hospital with respiratory related illnesses, with a statistically significantly longer stay in the ED when compared to those discharged home (p<0.001).

Conclusions

Wildfires produce smoke and subsequently poor air quality. The 2019/2020 Black Summer wildfire disaster in Australia resulted in an increase in respiratory-related patient presentations to the ED. Targeted public warning systems could be implemented in an attempt to limit an individual's exposure to wildfire smoke. Further, health services should monitor air quality as a predictor of patient presentations and subsequent health service demand, in support of ED preparedness.

El texto completo de este artículo está disponible en PDF.

Keywords : Wildfires, Bushfires, Smoke, Emergency department, Respiratory


Esquema


© 2022  The Authors. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 6

Artículo 100113- mai 2022 Regresar al número
Artículo precedente Artículo precedente
  • Predicting climate-sensitive water-related disease trends based on health, seasonality and weather data in Fiji
  • Sarah Nelson, Aaron Jenkins, Stacy D. Jupiter, Pierre Horwitz, Sangeeta Mangubhai, Seye Abimbola, Anaseini Ratu, Timoci Naivalulevu, Joel Negin
| Artículo siguiente Artículo siguiente
  • The 2021 Western North American heat dome increased climate change anxiety among British Columbians: Results from a natural experiment
  • Andreea Bratu, Kiffer G. Card, Kalysha Closson, Niloufar Aran, Carly Marshall, Susan Clayton, Maya K. Gislason, Hasina Samji, Gina Martin, Melissa Lem, Carmen H. Logie, Tim K. Takaro, Robert S. Hogg

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2024 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.