Suscribirse

Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data - 04/01/22

Doi : 10.1016/j.diii.2021.08.001 
Joël Greffier a, 1, , Julien Frandon a, 1, Salim Si-Mohamed b, Djamel Dabli a, Aymeric Hamard a, Asmaa Belaouni a, Philippe Akessoul a, Francis Besse c, Boris Guiu d, Jean-Paul Beregi a
a Department of Medical Imaging, CHU Nimes, Univ Montpellier, Medical Imaging Group Nimes, EA 2992, 30029 Nîmes, France 
b Department of Radiology, Hospices Civils de Lyon, 69500 Lyon, France 
c Department of Radiology Centre Cardiologique Nord, 93200 Saint Denis, France 
d Department of Radiology Saint-Eloi University Hospital, 34295 Montpellier, France 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

Using TrueFidelityTM algorithm, spatial resolution is independent of dose and contrast and image texture modification is limited.
Using AiCE algorithm, spatial resolution depends on dose and contrast and image is smoother, especially at highest level.
Detectability of chest lesions is greater with AiCE than with TrueFidelityTM at low dose levels but AiCE changes noise texture.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to compare the effect of two deep learning image reconstruction (DLR) algorithms in chest computed tomography (CT) with different clinical indications.

Material and methods

Acquisitions on image quality and anthropomorphic phantoms were performed at six dose levels (CTDIvol: 10/7.5/5/2.5/1/0.5mGy) on two CT scanners equipped with two different DLR algorithms (TrueFidelityTM and AiCE). Raw data were reconstructed using the filtered back-projection (FBP) and the lowest/intermediate/highest DLR levels (L-DLR/M-DLR/H-DLR) of each algorithm. Noise power spectrum, task-based transfer function (TTF) and detectability index (d’) were computed: d’ modelled detection of a soft tissue mediastinal nodule, ground-glass opacity, or high-contrast pulmonary lesion. Subjective image quality of anthropomorphic phantom images was analyzed by two radiologists.

Results

For the L-DLR/M-DLR levels, the noise magnitude was lower with TrueFidelityTM than with AiCE from 2.5 to 10 mGy. For H-DLR, noise magnitude was lower with AiCE . For L-DLR and M-DLR, the average NPS spatial frequency (fav) values were greater for AiCE except for 0.5 mGy. For H-DLR levels, fav was greater for TrueFidelityTM than for AiCE. TTF50% values were greater with AiCE for the air insert, and lower than TrueFidelityTM for the polyethylene insert. From 2.5 to10 mGy, d’ was greater for AiCE than for TrueFidelityTM for H-DLR for all lesions, but similar for L-DLR and M-DLR. Image quality was rated clinically appropriate for all levels of both algorithms, for dose from 2.5 to 10 mGy, except for L-DLR of AiCE.

Conclusion

DLR algorithms reduce the image-noise and improve lesion detectability. Their operations and properties impacted both noise-texture and spatial resolution.

El texto completo de este artículo está disponible en PDF.

Keywords : Multidetector computed tomography, Task-based image quality assessment, Deep learning image reconstruction

Abbreviations : AiCE, CT, DNN, DLR, GGO, HCP, HU, IR, NPS, ROI, SD, TF, TTF


Esquema


© 2021  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 103 - N° 1

P. 21-30 - janvier 2022 Regresar al número
Artículo precedente Artículo precedente
  • Iterative denoising accelerated 3D SPACE FLAIR sequence for brain MR imaging at 3T
  • Michael Eliezer, Alexis Vaussy, Solenn Toupin, Rémy Barbe, Stephan Kannengiesser, Alto Stemmer, Emmanuel Houdart
| Artículo siguiente Artículo siguiente
  • Optimization of image quality and accuracy of low iodine concentration quantification as function of dose level and reconstruction algorithm for abdominal imaging using dual-source CT: A phantom study
  • Djamel Dabli, Julien Frandon, Asmaa Belaouni, Philippe Akessoul, Takieddine Addala, Laure Berny, Jean-Paul Beregi, Joël Greffier

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.