Suscribirse

Iterative denoising accelerated 3D SPACE FLAIR sequence for brain MR imaging at 3T - 04/01/22

Doi : 10.1016/j.diii.2021.09.004 
Michael Eliezer a, b, , Alexis Vaussy c, Solenn Toupin c, Rémy Barbe a, Stephan Kannengiesser d, Alto Stemmer d, Emmanuel Houdart a, b
a Department of Neuroradiology, Lariboisiere University Hospital, 75010 Paris, France 
b Université de Paris, Faculté de Médecine, 75010 Paris, France 
c Siemens Healthineers France, 93210 Saint-Denis, France 
d Siemens Healthineers, 91052 Erlangen, Germany 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

A 37% scanning time reduction is obtained with 3D FLAIR while preserving image quality for brain MRI using iterative denoising (ID).
Higher degrees of interobserver agreement for image quality ,are obtained with accelerated FLAIR with ID compared to accelerated FLAIR without ID.
The use of ID reconstruction results in greater SNR and CNR with accelerated 3D FLAIR.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to prospectively evaluate image quality of three-dimensional fluid attenuated inversion recovery (3D-FLAIR) sequence acquired with a high acceleration factor and reconstructed with iterative denoising (ID) for brain magnetic resonance imaging (MRI) at 3-T.

Material and methods

Patients with brain tumor who underwent brain MRI were consecutively included. Two 3D-FLAIR sequences were successively performed for each patient. A first conventional FLAIR acquisition (conv-FLAIR) was performed with an acceleration factor of 6. The second acquisition was performed with an increased acceleration factor of 9. Two series one without ID (acc-FLAIR) and one with ID (acc-FLAIR-ID) were reconstructed. Two neuroradiologists independently assessed image quality, deep brain nuclei visualization and white matter/gray matter (WM/GM) differentiation on a 4-point scale.

Results

Thirty patients with brain tumor were consecutively included in this study. There were 16 women and 14 men with a mean age of 54 ± 17 (SD) years (range: 22–78 years). Scanning time of Acc-FLAIR-ID and Acc-FLAIR (4 min 40 sec) was 37% shorter than that of conv-FLAIR (2 min 50 sec) (P < 0.01). Improved image quality score was significantly different for both conv-FLAIR and acc-FLAIR-ID compared to acc-FLAIR (P < 0.01 for both). WM/GM differentiation score of conv-FLAIR was not significantly different compared to acc-FLAIR-ID (P = 0.10). Improved WM/GM differentiation score was different for both sequences compared to acc-FLAIR (P = 0.017 and P < 0.001). Deep brain nuclei visualization score was not different between conv-FLAIR and acc-FLAIR-ID (P = 0.71). However, the improved deep brain nuclei visualization score was significantly different for both sequences compared to acc-FLAIR (P < 0.001 for both).

Conclusion

Scanning time of 3D-FLAIR sequence using a high acceleration factor reconstructed with ID algorithm can be reduced by 37% while preserving image quality for brain MRI.

El texto completo de este artículo está disponible en PDF.

Keywords : Magnetic resonance imaging (MRI), 3D FLAIR, Iterative denoising, Brain MRI

Abbreviations : 3D, FLAIR, acc-FLAIR, acc-FLAIR-ID, CAIPIRINHA, CI, CNR, conv-FLAIR, CS, GRAPPA, ID, MPRAGE, MRI, PI, SD, SENSE, SNR, SPACE, STROBE, VIBE, WM/GM, TSE


Esquema


© 2021  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 103 - N° 1

P. 13-20 - janvier 2022 Regresar al número
Artículo precedente Artículo precedente
  • Hemorrhoid embolization: A review of current evidences
  • Reza Talaie, Pooya Torkian, Arash Dooghaie Moghadam, Farouk Tradi, Vincent Vidal, Marc Sapoval, Jafar Golzarian
| Artículo siguiente Artículo siguiente
  • Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data
  • Joël Greffier, Julien Frandon, Salim Si-Mohamed, Djamel Dabli, Aymeric Hamard, Asmaa Belaouni, Philippe Akessoul, Francis Besse, Boris Guiu, Jean-Paul Beregi

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.