Modified Weibull distribution for Biomedical signals denoising - 15/12/21

Doi : 10.1016/j.neuri.2021.100038 
A.M. Adam a , B.S. El-Desouky a , R.M. Farouk b
a Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt, P.O. Box, Egypt 
b Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt, P.O. Box, Egypt 

En prensa. Manuscrito Aceptado. Disponible en línea desde el Wednesday 15 December 2021
This article has been published in an issue click here to access

Highlights

Various types of biomedical signals and the importance of their study in medicine field.
Different types of noise that can corrupt biomedical signals, and the challenge of removing the noise and retrieving the original signal with as less effect as possible, so doctors can depend on the results in analyzing the signals and getting accurate information from it to build right diagnoses.
The increasing need for developing new techniques for noise removal as the increase importance of using biomedical signals in specific diseases diagnoses.
Blind Source Separation (BSS) is considered one the most powerful tools used for noise removal, so in this manuscript, a new developed technique using BSS and ICA based on fractional Weibull distribution is proposed.
The efficiency of the new proposed technique in removing the noise form different types of biomedical signals is remarkable, and the accuracy achieved is very good, which have been measured using MSE, MAE, SNR, PSNR, and cross correlation.

El texto completo de este artículo está disponible en PDF.

Abstract

A wide range of signs are acquired from the human body called Biomedical signs or biosignals, they can be at the cell level, organ level, or sub-atomic level. electroencephalogram is the electrical activity from the cerebrum, the electrocardiogram is the electrical activity from the heart, electrical action from the muscle sound signals referred to as electromyogram, the electroretinogram from the eye, and so on. Studying these signals can be so helpful for doctors, it can help them examine and predict and cure many diseases.

However, Biomedical signals are often affected by various types of noise, it's important to denoise the signals to get accurate information from them, the denoising process is solved by proposing an entirely novel family of flexible score functions for blind source separation, based on a family of modified Weibull densities. To blindly extract the independent source signals, we resort to the popular Fast independent component analysis approach, to adaptively estimate the parameters of such score functions, we use an efficient method based on maximum likelihood. The results obtained using modified Weibull densities in our technique are better than those obtained by other distribution functions.

El texto completo de este artículo está disponible en PDF.

Keywords : Biomedical signals denoise, Modified Weibull distribution, Maximum likelihood, electroencephalogram, electrocardiogram, Source separation, independent component analysis, Fast independent component analysis


Esquema


© 2021  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2024 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.