Suscribirse

Feasibility of lung imaging with a large field-of-view spectral photon-counting CT system - 28/04/21

Doi : 10.1016/j.diii.2021.01.001 
Salim Si-Mohamed a, b, 1, , Sara Boccalini a, b, 1, Pierre-Antoine Rodesch a, Riham Dessouky a, c, Elias Lahoud d, Thomas Broussaud a, Monica Sigovan a, Delphine Gamondes b, Philippe Coulon e, Yoad Yagil d, Loïc Boussel a, b, Philippe Douek a, b
a Claude-Bernard University Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne cedex, France 
b Department of Radiology, Hospices Civils de Lyon, 69000 Lyon, France 
c Department of Radiology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt 
d Global Advanced Technologies, CT, Philips Research, 34900 Haifa, Israel 
e Global Advanced Technologies, CT, Philips Research, 92000 Suresnes, France 

Corresponding author at: Claude-Bernard University Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne cedex, France.Claude-Bernard University Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-LyonVilleurbanne cedex69621France

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

The large field-of-view spectral photon-counting computed tomography system that was tested depicts up to 28-line pairs per centimeter.
The system allows 1024 matrix and 250μm slice thickness images with reduced radiation dose.
Owing to high spatial resolution capability, spectral photon-counting computed tomography images shows excellent conspicuity and sharpness of small lung structures.
Spectral photon-counting computed tomography lung images are of greater overall image quality than conventional CT images in human.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to characterize the technical capabilities and feasibility of a large field-of-view clinical spectral photon-counting computed tomography (SPCCT) prototype for high-resolution (HR) lung imaging.

Materials and methods

Measurement of modulation transfer function (MTF) and acquisition of a line pairs phantom were performed. An anthropomorphic lung nodule phantom was scanned with standard (120kVp, 62mAs), low (120kVp, 11mAs), and ultra-low (80kVp, 3mAs) radiation doses. A human volunteer underwent standard (120kVp, 63mAs) and low (120kVp, 11mAs) dose scans after approval by the ethics committee. HR images were reconstructed with 1024 matrix, 300mm field of view and 0.25mm slice thickness using a filtered-back projection (FBP) and two levels of iterative reconstruction (iDose 5 and 9). The conspicuity and sharpness of various lung structures (distal airways, vessels, fissures and proximal bronchial wall), image noise, and overall image quality were independently analyzed by three radiologists and compared to a previous HR lung CT examination of the same volunteer performed with a conventional CT equipped with energy integrating detectors (120kVp, 10mAs, FBP).

Results

Ten percent MTF was measured at 22.3lp/cm with a cut-off at 31lp/cm. Up to 28lp/cm were depicted. While mixed and solid nodules were easily depicted on standard and low-dose phantom images, higher iDose levels and slice thicknesses (1mm) were needed to visualize ground-glass components on ultra-low-dose images. Standard dose SPCCT images of in vivo lung structures were of greater conspicuity and sharpness, with greater overall image quality, and similar image noise (despite a flux reduction of 23%) to conventional CT images. Low-dose SPCCT images were of greater or similar conspicuity and sharpness, similar overall image quality, and lower but acceptable image noise (despite a flux reduction of 89%).

Conclusions

A large field-of-view SPCCT prototype demonstrates HR technical capabilities and high image quality for high resolution lung CT in human.

El texto completo de este artículo está disponible en PDF.

Keywords : iDose, Lung, Phantoms, Photon-counting detector, Tomography, X-ray computed

Abbreviations : CT, CTDIvol, EID, FOV, HR, HU, MTF, PCD, SPCCT


Esquema


© 2021  Publicado por Elsevier Masson SAS.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 102 - N° 5

P. 305-312 - mai 2021 Regresar al número
Artículo precedente Artículo precedente
  • Single breath-hold compressed sensing real-time cine imaging to assess left ventricular motion in myocardial infarction
  • Benjamin Longère, Marc-Henry Chavent, Augustin Coisne, Christos Gkizas, Julien Pagniez, Arianna Simeone, Valentina Silvestri, Michaela Schmidt, Christoph Forman, David Montaigne, François Pontana
| Artículo siguiente Artículo siguiente
  • Preoperative assessment of patient comorbidities before left colectomy: Comparison between ASA performance status scale and a new computed tomography physical status score
  • Elisabeth Hain, Maxime Barat, Carla Da Costa, Raphael Dautry, Christophe Baillard, Stéphane Bonnet, Bertrand Dousset, Philippe Soyer, Anthony Dohan, David Fuks, Sébastien Gaujoux

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.