Suscribirse

Computerized Advisory Decision Support for Cardiovascular Diseases in Primary Care: A Cluster Randomized Trial - 19/06/20

Doi : 10.1016/j.amjmed.2019.10.039 
Paul M. McKie, MD, MPH a, , Daryl J. Kor, MD b, c, David A. Cook, MD, MHPE d, e, Maya E. Kessler, MD, MPH f, Rickey E. Carter, PhD b, g, Patrick M. Wilson, MPH g, Laurie J. Pencille, CCRP b, d, Branden C. Hickey, BS, MAS d, Rajeev Chaudhry, MBBS, MPH d, f
a Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minn 
b Robert D and Patricia E Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minn 
c Department of Anesthesiology, Mayo Clinic, Rochester, Minn 
d Office of Information and Knowledge Management, Mayo Clinic, Rochester, Minn 
e Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minn 
f Division of Primary Care Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minn 
g Department of Health Sciences Research, Mayo Clinic, Rochester, Minn 

Requests for reprints should be addressed to Paul M McKie, MD, MPH, 200 2nd St SW, Rochester, MN 55902.200 2nd St SWRochesterMN55902.

ABSTRACT

Purpose

The purpose of this research was to evaluate the impact of an outpatient computerized advisory clinical decision support system (CDSS) on adherence to guideline-recommended treatment for heart failure, atrial fibrillation, and hyperlipidemia.

Methods

Twenty care teams (109 clinicians) in a primary care practice were cluster-randomized to either access or no access to an advisory CDSS integrated into the electronic medical record. For patients with an outpatient visit, the CDSS determined if they had heart failure with reduced ejection fraction, hyperlipidemia, or atrial fibrillation; and if so, was the patient receiving guideline-recommended treatment. In the intervention group, an alert was visible in the medical record if there was a discrepancy between current and guideline-recommended treatment. Clicking the alert displayed the treatment discrepancy and recommended treatment. Outcomes included prescribing patterns, self-reported use of decision aids, and self-reported efficiency. The trial was conducted between May 1 and November 15, 2016, and incorporated 16,310 patient visits.

Results

The advisory CDSS increased adherence to guideline-recommended treatment for heart failure (odds ratio [OR] 7.6, 95% confidence interval [CI], 1.2, 47.5) but had no impact in atrial fibrillation (OR 0.94, 95% CI 0.15, 5.94) or hyperlipidemia (OR 1.1, 95% CI 0.6, 1.8). Clinicians with access to the CDSS self-reported greater use of risk assessment tools for heart failure (3.6 [1.1] vs 2.7 [1.0], mean [standard deviation] on a 5-point scale) but not for atrial fibrillation or hyperlipidemia. The CDSS did not impact self-assessed efficiency. The overall usage of the CDSS was low (19%).

Conclusions

A computerized advisory CDSS improved adherence to guideline-recommended treatment for heart failure but not for atrial fibrillation or hyperlipidemia.

El texto completo de este artículo está disponible en PDF.

Keywords : Atrial fibrillation, Clinical decision support, Electronic medical record, Heart failure, Hyperlipidemia


Esquema


 Funding: This work was supported by the Office of Information and Knowledge Management and Center for the Science of Health Care Delivery at Mayo Clinic.
 Conflicts of Interest: None.
 Authorship: All authors had access to the data and a role in writing this manuscript.
 Trial Registration: clinicaltrials.gov. Identifier: NCT02742545.


© 2020  Publicado por Elsevier Masson SAS.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 133 - N° 6

P. 750 - juin 2020 Regresar al número
Artículo precedente Artículo precedente
  • Financial Incentives for Smoking Cessation in Hospitalized Patients: A Randomized Clinical Trial
  • Joseph A. Ladapo, Chi-Hong Tseng, Scott E. Sherman
| Artículo siguiente Artículo siguiente
  • Opportunities and Challenges of Disruptive Innovation in Medicine Using Artificial Intelligence
  • Rinku Skaria, Pratik Satam, Zain Khalpey

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.