Suscribirse

Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study - 26/01/20

Doi : 10.1016/j.diii.2019.07.002 
X. Gao a, b, X. Wang a, b,
a Shanghai Institute of Medical Imaging, 200032 Shanghai, China 
b Department of Interventional Radiology, Fudan University Zhongshan Hospital, 200032 Shanghai, China 

Corresponding author at: Department of Interventional Radiology, Fudan University Zhongshan Hospital, No.180, Fenglin Road, Xuhui District, 200032 Shanghai, China.Department of Interventional Radiology, Fudan University Zhongshan HospitalNo.180, Fenglin Road, Xuhui DistrictShanghai200032China

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Purpose

The purpose of this study was to evaluate the ability of deep learning to differentiate pancreatic diseases on contrast-enhanced magnetic resonance (MR) images with the aid of generative adversarial network (GAN).

Materials and Methods

A total of 504 patients who underwent T1-weighted contrast-enhanced MR examinations before any treatments were included in this retrospective study. First, the MRI examinations of 398 patients (215 men, 183 women; mean age, 59.14±12.07 [SD] years [range: 16-85 years]) from one hospital were used as the training set. Then the MRI examinations of 50 (26 men, 24women; mean age, 58.58±13.64 [SD] years [range: 24–85 years]) and 56 (30 men, 26 women; mean age, 59.13±11.35 [SD] years [range: 26–80 years]) consecutive patients from two hospitals were separately collected as the internal and external validation sets. An InceptionV4 network was trained on the training set augmented by synthetic images from GANs. Classification performance of trained InceptionV4 network for every patch and every patient were made on both validation sets, respectively. The prediction agreement between convolutional neural network (CNN) and radiologist was measured by the Cohen's kappa coefficient.

Results

The patch-level average accuracy and the micro-averaging area under receiver operating characteristic curve (AUC) of InceptionV4 network were 71.56% and 0.9204 (95% confidence interval [CI]: 0.9165–0.9308) for the internal validation set, and 79.46% and 0.9451 (95%CI: 0.9320–0.9523) for the external validation set, respectively. The patient-level average accuracy and the micro-averaging AUC of InceptionV4 network were 70.00% and 0.8250 (95%CI: 0.8147–0.8326) for the internal validation, 76.79% and 0.8646 (95%CI: 0.8489–0.8772) for the external validation set, respectively. Evaluated by human reader, the average accuracy and micro-averaging AUC for internal and external validation sets were 82.00% and 0.8950 (95%CI: 0.8817–0.9083), 83.93% and 0.9063 (95%CI: 0.8968–0.9212), respectively. The Cohen's kappa coefficients between InceptionV4 network and human reader for the internal and external invalidation sets were 0.8339 (95%CI: 0.6991–0.9447) and 0.8862 (95%CI: 0.7759–0.9738), respectively.

Conclusion

Deep learning using CNN and GAN had the potential to differentiate pancreatic diseases on contrast-enhanced MR images.

El texto completo de este artículo está disponible en PDF.

Keywords : Pancreatic diseases, Deep learning, Convolutional neural network (CNN), Generative adversarial network (GAN), Magnetic resonance imaging (MRI)


Esquema


© 2019  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 101 - N° 2

P. 91-100 - février 2020 Regresar al número
Artículo precedente Artículo precedente
  • How reproducible are classical and new CT-pelvimetry measurements?
  • C. Capelle, P. Devos, C. Caudrelier, P. Verpillat, T. Fourquet, P. Puech, C. Garabedian, L. Lemaitre
| Artículo siguiente Artículo siguiente
  • Acetic acid versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A randomized controlled trial
  • S.B. Paul, S.K. Acharya, S.R. Gamanagatti, V. Sreenivas, S. Shalimar, M.S. Gulati

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.