Suscribirse

Lesion detection on a combined “All-in-One” window compared to conventional window settings in thoracic oncology chest CT examinations - 14/12/19

Doi : 10.1016/j.diii.2019.07.009 
A. Snoeckx a, , P. Vuylsteke b, B.J.G. Broeckx c, K. Carpentier a, R. Corthouts a, E.A. Luyckx a, S. Nicolay a, A.V. Hoyweghen a, M.J. Spinhoven a, J. Cant b, P.M. Parizel a
a Department of Radiology, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium 
b Agfa Medical Imaging, 2640 Mortsel, Belgium 
c Ghent University, 9820 Merelbeke, Belgium 

Corresponding author at: Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium.Department of Radiology, Antwerp University Hospital and University of AntwerpWilrijkstraat 10Edegem2650Belgium

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Purpose

The purpose of this study was to investigate if lesion detection using a single “All-in-One” (AIO) window was non-inferior to lesion detection on conventional window settings in thoracic oncology chest computed tomography (CT) examinations.

Materials and methods

In a retrospective study, 50 consecutive chest CT examinations of 50 patients (31 men, 19 women; mean age 64±10 [SD] years, range: 35–82 years) containing 417 lesions, were reviewed by 6 radiologists, subdivided into 2 groups of 3 radiologists each, with similar levels of expertise in each group (senior staff member, junior staff member and radiology resident). All examinations were reviewed in conventional or AIO window settings by one of the groups. A ‘lesion’ was defined as any abnormality seen on the chest CT examination, including both benign and malignant lesions, findings in chest and upper abdomen, and measurable and non-measurable disease. Lesions were listed as ‘missed’ when they were not seen by at least two out of three observers. F-tests were used to evaluate the significance of the variables of interest within a mixed model framework and kappa statistics to report interobserver agreement.

Results

On a reader level, 54/417 lesions (12.9%) were not detected by the senior staff member reading the studies in conventional window settings and 45/417 (10.8%) by the senior staff member reading the AIO images. For the junior staff member and radiology resident this was respectively 55/417 (13.2%) and 67/417 (16.1%) for the conventional window settings and 43/417 (10.3%) and 61/417 (14.6%) for the AIO window. On a lesion level, 68/417 (16.3%) were defined as ‘missed’ lesions (lesions not detected by at least 2 readers): 21/68 (30.9%) on the AIO-window, 30/68 (44.1%) on conventional views and 17/68 (25.0%) on both views. The use of the AIO window did not result in an increase of missed lesions (P>0.99). Interobserver agreement in both groups was similar (P=0.46). Regarding lesions that were categorized as ‘missed’ on the AIO window or on conventional window settings, there was no effect of location (chest or upper abdomen) (P=0.35), window (P=0.97) and organ (P=0.98).

Conclusions

A single AIO-window is non-inferior to multiple conventional window settings for lesion detection on chest CT examinations in thoracic oncology patients.

El texto completo de este artículo está disponible en PDF.

Keywords : Diagnosis, Computed tomography (CT), Computer-assisted image processing, Computer-assisted image interpretation, Lung neoplasms


Esquema


© 2019  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 101 - N° 1

P. 25-33 - janvier 2020 Regresar al número
Artículo precedente Artículo precedente
  • Endovascular stenting for chronic femoro-iliac venous obstructive disease: Clinical efficacy and short-term outcomes
  • K. Guillen, N. Falvo, M. Nakai, O. Chevallier, S. Aho-Glélé, C. Galland, E. Demaistre, L. Pescatori, M. Samson, S. Audia, B. Bonnotte, M. Midulla, R. Loffroy
| Artículo siguiente Artículo siguiente
  • Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation
  • S. Park, L.C. Chu, E.K. Fishman, A.L. Yuille, B. Vogelstein, K.W. Kinzler, K.M. Horton, R.H. Hruban, E.S. Zinreich, D. Fadaei Fouladi, S. Shayesteh, J. Graves, S. Kawamoto

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.