Suscribirse

Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma - 05/04/18

Doi : 10.1016/j.jaci.2017.05.052 
Weiliang Qiu, PhD a, , Feng Guo, PhD a, , Kimberly Glass, PhD a, Guo Cheng Yuan, PhD b, c, John Quackenbush, PhD b, c, Xiaobo Zhou, PhD a, Kelan G. Tantisira, MD a, d,
a Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass 
b Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass 
c Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass 
d Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass 

Corresponding author: Kelan G. Tantisira, MD, Brigham and Women's Hospital and Harvard Medical School, Channing Division of Network Medicine, 181 Longwood Ave, Boston, MA 02115.Brigham and Women's Hospital and Harvard Medical SchoolChanning Division of Network Medicine181 Longwood AveBostonMA02115

Abstract

Background

Variations in drug response between individuals have prevented us from achieving high drug efficacy in treating many complex diseases, including asthma. Genetics plays an important role in accounting for such interindividual variations in drug response. However, systematic approaches for addressing how genetic factors and their regulators determine variations in drug response in asthma treatment are lacking.

Objective

We sought to identify key transcriptional regulators of corticosteroid response in asthma using a novel systems biology approach.

Methods

We used Passing Attributes between Networks for Data Assimilations (PANDA) to construct the gene regulatory networks associated with good responders and poor responders to inhaled corticosteroids based on a subset of 145 white children with asthma who participated in the Childhood Asthma Management Cohort. PANDA uses gene expression profiles and published relationships among genes, transcription factors (TFs), and proteins to construct the directed networks of TFs and genes. We assessed the differential connectivity between the gene regulatory network of good responders versus that of poor responders.

Results

When compared with poor responders, the network of good responders has differential connectivity and distinct ontologies (eg, proapoptosis enriched in network of good responders and antiapoptosis enriched in network of poor responders). Many of the key hubs identified in conjunction with clinical response are also cellular response hubs. Functional validation demonstrated abrogation of differences in corticosteroid-treated cell viability following siRNA knockdown of 2 TFs and differential downstream expression between good responders and poor responders.

Conclusions

We have identified and validated multiple TFs influencing asthma treatment response. Our results show that differential connectivity analysis can provide new insights into the heterogeneity of drug treatment effects.

El texto completo de este artículo está disponible en PDF.

Graphical abstract




El texto completo de este artículo está disponible en PDF.

Key words : Pharmacogenomics, gene expression, inhaled corticosteroids, apoptosis, system biology

Abbreviations used : CAMP, DC, DE, FEV1%, ICS, LCL, PANDA, TF


Esquema


 This study was supported by the National Institutes of Health (grant nos. R01 HL092197, K23 HG003983, U01 HL065899, R01 HL111759, P01 HL105339, R01 HL127200, and R33 HL120794).
 Disclosure of potential conflict of interest: K. Glass receives grant support from the National Institutes of Health (NIH)/the National Heart, Lung, and Blood Institute (NHLBI). J. Quackenbush receives grant support from the NHLBI. K. G. Tantisira receives grant support from the NIH. The rest of the authors declare that they have no relevant conflicts of interest.


© 2017  American Academy of Allergy, Asthma & Immunology. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 141 - N° 4

P. 1250-1258 - avril 2018 Regresar al número
Artículo precedente Artículo precedente
  • The obese-asthma phenotype in children: An exacerbating situation?
  • Cristina Longo, Gillian Bartlett, Tibor Schuster, Francine M. Ducharme, Brenda MacGibbon, Tracie A. Barnett
| Artículo siguiente Artículo siguiente
  • Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor–transmembrane protein 16A–voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma
  • Pei Wang, Wei Zhao, Jie Sun, Tao Tao, Xin Chen, Yan-Yan Zheng, Cheng-Hai Zhang, Zhong Chen, Yun-Qian Gao, Fan She, Ye-Qiong Li, Li-Sha Wei, Ping Lu, Cai-Ping Chen, Ji Zhou, Da-Quan Wang, Liang Chen, Xiao-Hao Shi, Linhong Deng, Ronghua ZhuGe, Hua-Qun Chen, Min-Sheng Zhu

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.